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ABSTRACT 

 Recent earthquakes near highly populated cities have reminded the world and engineers 

about the destructive capabilities of an earthquake event.  This is especially true in the design 

of reinforced concrete bridge columns that need to survive an event to maintain life safety 

and provide operational capacity along major lifelines to provide immediate assistance to the 

regions affected.  The research presented within this document examines the current state of 

practice and looks for ways to improve the design methodologies prior to an event that 

highlights unforeseen consequences.  This is accomplished through a series of analytical and 

experimental studies that include: (1) the development of a new simplified method for the 

lateral load response of columns continuously supported on drilled shafts; (2) the behavior of 

concrete and soil when subjected to frozen conditions; and (3) the impacts of current 

methodologies for the establishment of transverse confinement reinforcement on the seismic 

response of reinforced concrete bridge columns. 

 A new approach is discussed within that defines an equivalent cantilever supported by a 

flexible base using a set of three springs for the establishing the lateral load response of 

columns continuously supported on drilled shafts in non-cohesive soils.  This is an extension 

of the work presented in Appendix A in order to provide a consistent approach for both 

cohesive and non-cohesive soils that may be encountered near a bridge site.  The effective 

height of the system was defined as the distance from column tip to the point of maximum 

moment to identify a critical design location for the establishment of transverse confinement 

reinforcement.  The new method was found to adequately capture the response when 
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compared with the experimental work of Chai and Hutchinson (2002) and analytical models 

produced in LPILE. 

 Controlled material tests were performed on concrete and soil to examine the effects of 

seasonal freezing on their respective behaviors.  Testing was conducted in controlled 

environments to maintain the temperature throughout the entire loading protocols.  In each 

set of tests, it was concluded that significant changes would occur to the engineering 

properties when subjected to subzero conditions. 

 Materials testing on confined and unconfined concrete provided evidence that both 

the confined and unconfined compressive strength would increase as temperature 

decreased.  The strain at the peak compressive strengths increased for the confined 

concrete and decreased for the unconfined concrete.  Furthermore, the modulus of 

elasticity increased in both instances.  These changes are important in ensuring an 

accurate moment-curvature response of the reinforced concrete sections used in a 

seismic design. 

 Soil testing found that an increase in strength by a factor of 10 and 100 would occur 

at temperatures of -1 °C (30.2 °F) and -20 °C (-40 °F) when compared with the warm 

weather testing at 20 °C (68 °F).  This is of importance as the upper levels of soil 

cause changes that result in the shifting of the maximum moment location and 

increasing of the foundation shaft and column lateral shear demands. 

 The final portion of these studies was an investigation into the required amounts of 

transverse confinement reinforcement.  The study indicated that the variation in requirements 
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could be as high as a factor of two to three depending on the approaches compared within the 

study.  Furthermore, the information was extended to the impacts of the approaches on the 

curvature and displacement ductility capacity and demand.  This study found that current 

equations may result in demand exceeding capacity and a new equation should be developed 

that takes into account the expected demand, axial load ratio, amount of longitudinal 

reinforcement, material properties and the ratio of the gross area to core area of the concrete 

cross-section.
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CHAPTER 1:  INTRODUCTION 

1.1 Recent History  

 In recent years, numerous major to great earthquakes have taken place across the world in 

places like Chile (Mw = 8.8 in 2010), New Zealand (Mw = 6.2 in 2011) and Japan (Mw = 9.0 

in 2011) that continue to remind the world and engineers about the destructive capabilities of 

a seismic event, and Figure 1-1 provides a few pictures of damage in these regions.  The 

main reason these specific seismic events brought awareness to the forefront, even though 

these events regularly take place, was that they occurred in areas with large populations and 

significant infrastructure, and resulted in unexpected amounts of damage.   

 
    (a)      (b)             (c)   

Figure 1-1:  Damage of structures due to recent earthquakes: (a) bridge column from 

Christchurch Earthquake (Palermo et al. 2011); (b) bridge column from 

Tohoku Earthquake (Kawashima et al. 2011); (c) wall from Chile 

Earthquake (EERI 2012) 

 The New Zealand earthquake, commonly referred to as the 2011 Christchurch 

Earthquake, happened near the city of Christchurch, which is one of the most populous cities 

in the island nation.  The 2011 earthquake caused large amounts of damage to the buildings 

within the city of Christchurch.  Most buildings in the city of Christchurch were built with 
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masonry and concrete, and the damage occurred to older and most importantly modern 

buildings.  The amount of demolition required within the city of Christchurch following the 

earthquake was approximately 78% of the buildings examined (~826 buildings) on the 

demolitions list provided by the Canterbury Earthquake Recovery Authority (CERA) (2012) 

with an additional 16% scheduled for partial demolition (~170 buildings).  The list provided 

by CERA has three main categories of demolish, partial demolish and make safe with a total 

of 1058 buildings examined which does not encompass every building in the city.  The 

partial demolish heading requires part of the building to be taken down immediately because 

of safety concerns and can include walls, facades and part of the overall structure.  On this 

list are buildings with significance to the city that must be demolished including: (1) the 

tallest structure in the city known as the Grand Chancellor hotel that was leaning heavily, 

and; (2) the Crowne Plaza Hotel appeared to be in good condition on the outside but was still 

scheduled for demolition because of soil liquefaction in the surrounding area.   

  
  (a) Grand Chancellor Building    (b) Crowne Plaza Hotel 

Figure 1-2: Images of buildings after the 2011 Christchurch Earthquake in New 

Zealand 
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 Bridge and road damage was also noted in the area such that 52% of the urban sealed 

roads needed rebuilding due to the earthquake (SCIRT 2012).  Many of the bridges in the 

central business district survived the earthquake such that the vertical load carrying capacity 

was maintained, but the extent of the damage typically occurred near the abutments of the 

bridges since the liquefaction caused the bridges to act as a single strut between the two river 

banks (Palermo et al. 2011).  The Earthquake Engineering Research Institute (EERI) and 

Pacific Earthquake Engineering Research (PEER) Center investigative team furthered this 

notion by stating that many of the bridges exhibited flexural cracking of the piles due to 

liquefaction and lateral spreading (2012).  However, the density of bridges within the city 

area itself where significant building damage was widespread is very small.  Other bridges 

throughout the world in regions with significant damage and ground motion may not perform 

in a similar manner as the surrounding soil may not liquefy and the structures themselves 

could unseat or experience other damage associated with earthquake ground motions.  

Further damage was noted, in the EERI Special Report, about the utilities that the bridges 

carried such that sewer and water lines broke spilling into the surrounding rivers and/or 

washing out embankments.  

 In the Tohoku Earthquake of 2011 (Japan), the large magnitude earthquake was also 

combined with a tsunami that caused massive flooding and damage.  A key component 

gathered from this earthquake was that it had a rather long duration (3 minutes) and affected 

the infrastructure prior to the flooding of the tsunami waves.  The bridges in the area tended 

to survive against the earthquake ground motion, but not necessarily the tsunami, if they were 

new or retrofitted to current standards in the Japanese design requirements (EERI 2012).  The 
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older buildings, both residential and commercial, tended to show the most damage from the 

shaking, but the modern structures had less damage than expected (PEER et al. 2012).  The 

lack of expected damage to structures due to the large magnitude shaking warrants further 

investigation by researchers. 

 The Chilean Earthquake of 2010 allowed for a great comparison between the U.S. codes 

in high seismic regions as they currently use a very similar practice and tend to use a number 

of reinforced concrete components.  The damage resulting from this earthquake found that 

the base isolated structures tended to not be as damaged as the remaining structures, but those 

that were damaged had soft stories.  Furthermore, the building damage was found to take 

place in locations where structural shear walls were placed such that they would not 

adequately take the seismically induced lateral loads.  A number of walls in the reinforced 

concrete buildings had a lack of reinforcement steel in the edge regions (i.e., the boundary 

areas) of walls which lead to the crushing of concrete in these areas as seen in Figure 1-1(c).  

These three events and the unexpected amounts of damage emphasize the need for continual 

improvements in our understanding of earthquakes and how to design structures to withstand 

these events. 

1.2 Design Approaches 

In regions that have recently experienced major seismic events, many changes to the 

design approach used for reinforced concrete structures have occurred.  However, two main 

approaches to the lateral design of a structure subjected to a design level or greater 

earthquake are in existence.  These approaches consist of defining objectives based on forces 

or lateral displacements.  The trend in the U.S. design approaches has begun to recognize the 
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importance of the direct displacement-based approach instead of the traditional force-based 

approach.  A third method to design lateral force resisting members has arisen in current 

practice based on the desired performance of a structure or system with multiple objectives.  

This method in particular can be done using either a force-based or displacement-based 

approach. 

1.2.1 Force-Based Design (FBD) 

Force-based design has been around for nearly a century as Hardy Cross determined 

moment-distribution in the early 1920s (Leet et al. 2011).  This method of analysis and other 

approaches (e.g., the flexibility and stiffness methods) developed later on allowed for 

relatively simple means of computing forces applied to a structural member.  Members are 

then designed such that they will not fail under the applied load.  In seismic situations, an 

equivalent static method is commonly used to determine the lateral forces and associated 

member forces that a design level earthquake would apply to a given structure.  These forces, 

however, may not always control the sizing of a member because effects from dead load, live 

load, wind load, serviceability conditions and other design criteria influence the overall size 

of members.  Furthermore, the lateral forces computed in this method are generally based on 

the natural period of the structure in the first mode only, which must be determined using 

known geometry from other loading cases or an approximation based on height of the 

structure.  This process, however, does not typically take into account many factors including 

the fact that strength and stiffness are dependent on one another.  Displacement has been 

generally only checked within the recent past decades using a pushover analysis, ignoring 

inertial effects, to ensure that any displacement requirements were satisfied once a design 
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was finalized.  Should additional displacement be needed the design would be redone and 

most likely result in the use of additional confinement reinforcement.  The volumetric ratio 

of transverse reinforcement, s, would then be increased implicitly for improvement as this 

would improve the ductility. 

Following the 1971 San Fernando Earthquake and the extensive damage caused to 

structures designed using the force-based procedures, a shift in design philosophy began to 

take place, albeit at a slow pace.  The damage throughout many structures indicated that the 

fundamental concepts of structures being designed to remain elastic under loading must be 

modified to ensure an adequate behavior.  To attain the desired response, researchers began 

to focus on ways to increase the ductility of a system to prevent collapse.  Out of this came 

the capacity design philosophy which focused on carefully selecting plastic hinge regions 

while ensuring no collapse under design-level and greater earthquakes (Priestley et al. 1996 

and Priestley et al. 2007).  Insufficient ductility and/or drift in a design was handled by 

implicitly increasing the transverse confinement reinforcement until a satisfactory result was 

attained. 

1.2.2 Direct Displacement-Based Design (DDBD) 

FBD demonstrated further weaknesses in the damage noted during the 1989 Loma Prieta 

and 1995 Kobe earthquakes because of the lack of adequately defining the seismic forces 

applied to a system and the handling of stiffness for any given structure.  Instead of focusing 

purely on the improvement of force predictions, research began to focus on the idea of 

reaching a target displacement without failure.  This led to the development of the direct 

displacement-based design (DDBD) methodology, where researchers began to target drifts 
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and/or displacements that a given structure should reach for a specific target hazard.  The 

determination of an appropriate level of damping and ductility can then be used to determine 

an effective period for the structural member.  This effective period can then be used to 

compute the effective stiffness of a member, which can then be related to a base shear force 

and distributed throughout to complete the design process.  This method takes into account 

the fact that strength and stiffness are related to better improve the design process to prevent 

collapse under a design level or greater earthquake.  In this approach, the amount of 

confinement reinforcement could be established based on the strain capacity of the confined 

concrete region.  However, equations between the ultimate strain and desired curvature 

capacity seldom exist; thus, an iterative procedure is needed to define the confinement 

reinforcement needed for a system.  For this purpose, an equation such as that recommended 

by Priestley et al. (1996), reproduced in Eq. (1-1), is used to link the amount of horizontal 

reinforcement to the targeted curvature capacity of the bridge cross-section based on the 

work of Mander et al. (1988).  Sritharan et al. (1997) found that this recommendation 

suggested for design resulted in a reserve capacity of the confined concrete section by as 

much as 50%. 

          
           

   
                     Eq. (1-1) 

where: cu     = ultimate concrete strain; 

s  = volumetric spiral reinforcement; 

fyh  = yield strength of hoop steel; 

su  = ultimate strain of steel reinforcement; and 
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   = confined concrete compressive strength. 

1.2.3 Performance-Based Design 

Performance-based design, although stated to have been around for quite a while by 

many sources, has emerged in the past couple of decades as the ideal design methodology for 

seismic situations.  This method came to the forefront with the ATC-33 Project that 

attempted to create a standardized method for performance-based design and resulted in the 

publication of the FEMA-273 (1997) and FEMA-274 (1997) reports.  In general, the 

performance-based methods for the seismic design of structures use multiple objectives with 

different criteria for each to define the desired response of a structure and can be completed 

using FBD or DDBD.  The main sections suggested for performance-based design for 

seismic regions include (1) fully operational; (2) operational; (3) life safe, and; (4) near 

collapse (Priestley 2000).  These sections of the design approach rely on the designer having 

to meet requirements such as the structure withstanding a certain magnitude earthquake, 

attaining a certain displacement ductility or drift, and/or meeting a specific level of damage.  

In the American Association of State Highway and Transportation Officials (AASHTO) 

Guide Specification for LRFD Seismic Bridge Design (2010), it is stated that the bridge must 

meet the life safety objective for an event with a seven percent probability of exceedance in 

75 years (~1000 year return period).  Furthermore, individual ductility demands must be less 

than a certain value based on the type of column bent (i.e., single vs. multiple) and the 

orientation of pier walls.  The California Department of Transportation (Caltrans) extends 

this approach in the Seismic Design Criteria (SDC) by stating that the displacement ductility 
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capacity of a single member shall be greater than 3 while the demand should be established 

such that the displacement ductility demand shall be less than 4 (Caltrans 2010). 

1.3 Limitations within practice 

The aforementioned design approaches are highly prevalent in everyday practice 

throughout the United States and are constantly evolving, but each approach has it benefits 

and various methods are used to complete a design.  The completion of any adequate design 

and analysis begins with a thorough understanding of the structural system and its 

components.  This process requires accurate modeling and assumptions to be made about 

boundary conditions, material constitutive laws, ground motion and many other influences 

such as temperature.  Numerous design models exist in practice to predict these effects and 

behaviors that are based off of theoretical and experimental simulations.  Over the years, this 

has led to a more complicated design methodology, but changes in the overall process have 

typically only come about after significant events cause unforeseen damage.  Counteracting 

this technique requires a proactive examination of the current design methodologies and 

models used in practice.  With this in mind, it was found that the models used to produce 

adequate results tend to have some limitations.  These limitations arise in the way in which 

materials are expected to behave, how the complexity of systems are handled and what 

components/quantity are important to a specific design.  This ranges from the amount of 

confinement reinforcement needed in a critical region to the temperature at which a system 

should be designed.  Each component involved in the modeling must be adequately 

accounted for as the overall response will be impacted and incorrect assumptions in some 
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parts may lead to catastrophic failure while other invalid assumptions may not lead to a 

failure in the system but a weaker understanding of the behavior.   

1.3.1 Confinement Reinforcement 

One area of improvement in our current design process is in the definition of 

confinement reinforcement that is typically used within critical regions of reinforced concrete 

columns and beams.  This horizontal reinforcement ensures a ductile response of the system 

and component when subjected to a design level or greater earthquake.  Confinement 

reinforcement in the form of closed loop ties or spirals resists the dilation of the concrete by 

providing lateral resistance when a load is applied to a system, thus increasing the overall 

capacity and ductility of the concrete section, Figure 1-3.  Different guidelines and 

specifications suggest different methods of computing the appropriate amount of transverse 

reinforcement for confinement purposes [AASHTO (2012), Caltrans (2010), Priestley 

(1996), Standards New Zealand (2008), ATC (1996)] and each one uses some common and 

uncommon parameters about the concrete, steel reinforcement and cross-section details, as 

will be discussed further in Chapter 2. 
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Figure 1-3: Examples of confinement in high seismic regions 

Recent history and great earthquakes such as the Chilean earthquake of 2010 (Mw = 8.8) 

and the Tohoku Japan Earthquake of 2011 (Mw = 9.0) has shown that our current 

understanding of the transverse confinement reinforcement within a cross-section is still a 

work in progress, Figure 1-4.  Examination of current guidelines, as part of a project for the 

California Department of Transportation (Caltrans), [Shelman and Sritharan 2013] has 

indicated that the different approaches for establishing adequate transverse reinforcement 

according to guidelines vary by as much as two to three times the smaller value with no 

consensus on the best available method.  A sample of this variation is shown in Figure 1-5 

through a comparison of methods by increasing only concrete compressive strength,   
 , and 

leaving the column diameter at 4 ft, the axial load ratio at 5%, longitudinal reinforcement 

ratio at 2% and a 3 in. cover with #5 bar horizontally. 

(a) Spiral Reinforcement (b) Tie/Hoop Reinforcement 
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Figure 1-4: Confinement damage to reinforced concrete columns 

 Variation in the amount of transverse confinement reinforcement required for a design is 

also a function of the amount of longitudinal reinforcement, the applied axial load ratio, the 

ratio of the gross concrete area to the core concrete area, the expected demand and the 

material properties used in the cross-section.  The material properties, however, are based on 

current understanding of the stress-strain behavior of confined and unconfined concrete (e.g., 

Mander et al. 1988 and Priestley et al. 1996).  These approaches rely on the establishment of 

the ultimate concrete strain to determine the final capacity and ductility of the section.  The 

definition of the strain is complicated by the fact that it must take into account additional 

Upper Left:  Hanshin Expressway during the 1995 

Kobe Earthquake 

Lower Left:  Nakasone Viaduct during the 2011 Great 

East Japan Eartquake (Kawashima et. al 2011) 

Right:  1994 Northridge Earthquake (NOAA/NGDC 

2013) 
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variables including: (1) amount of cross-section under compression; (2) the dual role of 

longitudinal reinforcement in the axial and transverse directions; (3) conservatism of an 

equation such as Eq. (1-1), and; (4) the size of the column tested for establishment. 

 

Figure 1-5: Impact of concrete compressive strength on horizontal reinforcement ratio   

1.3.2 Soil-Foundation-Structure-Interaction 

 During the design process of integrated column-foundation systems, the effects of soil-

foundation-structure-interaction (SFSI) complicate the lateral loading analysis and thus the 

design methodology.  SFSI complicates the process for multiple reasons, but all hinges on 

one issue—how to correctly model the effects of the soil so that they can be accurately 

accounted for in structural design.  Many researchers have examined ways of accounting for 

SFSI [e.g., Reese et al. (1975), Priestley et al. (1996), Budek et al. (2000), Chai (2002) and 

0.000

0.005

0.010

0.015

0.020

4 5 6 7 8 9 10

H
o

ri
zo

n
ta

l 
R

ei
n

fo
rc

em
en

t 
R

a
ti

o
, 


s 

Concrete Compressive Strength (ksi) 
AASHTO Equation 5.7.4.6-1 AASHTO Equation 5.10.11.4.1d-1

Priestley et al. (1996) Equation 5-47 Caltrans Bridge Specs. (2003) Equation 8-62A

Caltrans Bridge Specs. (2003) Equation 8-62B NZS 3101 (2008) Equation 10-39 with #8 Bar

NZS 3101 (2008) Equation 10-39 with #11 Bar Priestley et al. (1996) Equation 5-56 with #8 Bar

Priestley et al. (1996) Equation 5-56 with #11 Bar



www.manaraa.com

14 

 

Priestley et al. (2007)], but each method, whether complex or simple, has limitations.  Some 

of the simplified methods, constructed to reduce computational time, assume that the system 

will behave in an elastic perfectly plastic manner while others remove soil altogether and 

treat the system as a fixed based cantilever.  Although these methods provide results, the 

following concerns about their use were noted: (1) they were not necessarily calibrated to 

adequate experimental tests; (2) they tend to under predict the analytical plastic hinge length; 

(3) critical regions may not be identified accurately, and; (4) other limitations exist that are 

model dependent and not discussed herein.   

 A satisfactory approach throughout the years to capture these effects has been through the 

use of numerical analysis methods that model the soils using nonlinear springs, known as the 

Winkler foundation model (1867).  These springs are assumed to support a beam and can 

thus be used to determine the force-displacement response of piles subjected to lateral 

loading in soil as well as the overall structural response.  Other methods including full two-

dimensional and three-dimensional finite element analyses have been shown to adequately 

capture the lateral loading response.  In these complex and very detailed approaches, 

significant amounts of input information are generally required along with large amounts of 

computational time to complete the analyses. 

 Examples of some of these problems are found when using the model proposed by Chai 

(2002) in a cohesive soil medium although recommended by AASHTO (2010) to determine 

the lateral load behavior.  The simplified model in this case assumes a uniform layer of soil 

and that the overall response of the system behaves in an elastic-perfectly plastic manner.  In 

Shelman et al. (2010), comparisons were made between full-scale experimental testing, a 
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Winkler foundation model method and many simplified models used to account for SFSI in 

the design and analysis process of bridge columns.  The results of one such analysis for 

Chai’s simplified model (2002) is provided graphically in Figure 1-6, and the following 

limitations were found: 

 The perfectly plastic response ignores the combined nonlinear behavior of reinforcing 

steel, concrete and soil between the yield and ultimate conditions. 

 The maximum moment location was under predicted by 29.3%, thus altering the 

overall displacement of the system. 

 The model established an analytical plastic hinge length using experimental testing in 

a cohesionless soil, but still recommended its use for cohesive soils.  This resulted in 

an under prediction of the plastic rotation and plastic displacement by about 30% 

when compared with the Winkler Foundation model that adequately captures the 

lateral load response. 
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Figure 1-6: Comparison of experimental field data with analytical models used in 

design 

 In addition to the need for an appropriate simplified model for design purposes, the 

understanding of soil properties involved in SFSI, especially those near the ground surface, 

must be adequately addressed.  Soil located near the ground surface typically has the greatest 

influence on the response of the system, as this is where the soil generally provides the 

largest amount of resistance to lateral movement but has the largest amount of variability 

because of weathering properties.  Furthermore, soil stiffness along the foundation depth 

dictates the global and local displacements of the system, the local curvature demand and 

much more.  Thus, all possible conditions and the resulting soil properties must be defined to 

ensure the best possible design to prevent failure. 
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1.3.3 Temperature 

 The effects of soil-foundation-structure-interaction are commonly taken into account 

during seasons of warm weather conditions.  This is the case as the soil typically behaves in a 

more ductile manner which allows more displacement to occur in the overall structural 

system.  Although the larger displacement must be accounted for so the appropriate seating 

length, column ductility and other seismic factors are accounted for, the effects of seasonal 

freezing must also be handled.  This is currently a major deficiency in the field of earthquake 

engineering, as some of the largest earthquakes (e.g., 1811-1812 New Madrid Series and the 

1964 Great Alaska earthquake) actually occurred in regions of the United States during 

winter months where ground freezing may take place.  An exploratory research program by 

Sritharan et al. (2007) found that brittle failure of bridge columns may take place unless the 

effects of seasonal freezing are accounted for in seismic design.  The effects of cold 

temperature are further exacerbated by the unknown effects caused to the moment-curvature 

response of a critical member section.  The significance of these two issues are made more 

critical as they are in direct violation of the capacity design principles where a   designer 

should allow flexural yielding while preventing an undesirable failure mode.  In the 

exploratory research that examined the performance of continuous columns supported on 

drilled shaft foundations, Suleiman et al. (2006) drew the following conclusions regarding 

the lateral load response of a full-scale test in wintry conditions with respect to the response 

of an identical system in warm conditions: 

 effective elastic stiffness increased by 170%, 

 lateral load resistance increased by 44%, 
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 maximum moment location shifted upwards by 0.84 m (33 in.), 

 plastic region length reduced by 64% in the foundation shaft, and  

 gap opening at the base of the column reduced by 60%. 

Results for the cyclic responses of the two column-shaft systems are presented in Figure 1-7.  

These results demonstrate the drastic difference between seasonal wintry conditions and 

summer conditions where one can see a significant difference in the lateral force at a 

comparable displacement between the two experiments.  Due to the large variation in the 

lateral response of the system, any new development in the seismic design process of an 

integrated column-foundation shaft should give consideration to this issue. 

  

  

        (a) SS1 at 23 °C       (b) SS2 at -10 °C 

Figure 1-7: Cyclic load testing results (Suleiman et al., 2006) 

 Further analytical studies by Wotherspoon et al. (2010a & b) validated the studies 

performed by Sritharan et al. (2007) by reconstructing the model in a separate computer 

program, Figure 1-8.  Besides comparison with the test models at Iowa State University, the 

authors examined seismic ground motions with periods between 25-years and 2500-years.  
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During this investigation it was found that: (a) the peak shear demand for the 2500-year 

return period was 56% of the section capacity in summer and 76% of the capacity in the 

winter; (b) 29% of the displacement capacity was reached in the summer compared to 62% 

of the displacement capacity in the wintry conditions for the 500-year return period; and (c) 

more cycles of high strain deformation occur in wintry times possibly resulting in low-cycle 

fatigue. 

 The broad impact of seasonal freezing and seismic conditions on bridge structures 

throughout the United States and Japan was investigated by Sritharan and Shelman (2008). 

This study showed that seismic response of approximately 50% of the 66,000 bridges in 

active seismic regions would be affected by seasonal freezing.  Furthermore, when applying 

a minimum frost depth condition of 10 cm (4 in.), over 400,000 bridges or two-thirds of all 

bridges in the U.S. were found to be affected by seasonally frozen conditions, yet this issue is 

seldom addressed in routine design methods.  The study was extended to the nation of Japan 

where the authors concluded that the northern part of Honshu Island and Hokkaido Island 

could experience similar conditions based on available historical earthquake and 

meteorological data. 
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Figure 1-8: Cyclic force-displacement responses for (a) SS1 column top; (b) SS2 column 

top; (c) SS1 column base; (d) SS2 column base. 

1.4 Research Objectives 

 Based on the limitations associated with the current design approaches and models used 

in practice, the research presented within this document looks to advance the current state of 

practice for the seismic design of reinforced concrete bridge columns.  This will be 

accomplished through a proactive approach using both experimental and analytical means to 

further identify limitations and make recommendations for the improvement as it relates to 

the seismic design of reinforced concrete columns.  The tasks completed within these studies 
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will validate and improve current models for both SFSI and confinement reinforcement while 

accounting for the influence of seasonal freezing. 

1.4.1 Experimental Investigation 

 To better understand the behavior of materials and their impact on the seismic design of 

reinforced concrete bridge columns, a series of controlled material tests were performed at 

warm temperatures and cold temperatures expected to occur in regions of seasonal freezing 

throughout the United States and the world.  This temperature range was between 20°C 

(68°F) and -30°C (-22°F) as this is common in high seismic regions including but not limited 

to Alaska, the central United States, northern California, China, and Japan.  This is an 

important aspect to understand as approximately 50% of the bridges in high seismic regions 

can be affected by freezing temperatures (Sritharan and Shelman 2008).  The main materials 

examined experimentally in this study are unconfined concrete, confined concrete and soil.  

Reinforcing steel was not examined in this document as it was investigated in a concurrent 

study at Iowa State University by Levings and Sritharan (2012). 

 Concrete, both confined and unconfined, must be examined at different temperatures to 

determine whether or not the current model commonly used in practice (i.e., Mander et al. 

1988a & b) is still valid for the establishment of an adequate stress-strain curve for modeling 

purposes, Figure 1-9.  Confined concrete testing at seasonally frozen temperatures was 

especially important as little to no information exists on the behavior of confined concrete at 

freezing temperatures although these temperatures can be seen in high seismic regions such 

as Alaska, California and the northern part of Japan.  The concrete material testing was an 

exploratory study to examine the effects of temperature while considering multiple horizontal 
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reinforcement ratios, concrete compressive strengths and any possible effects of sample size 

that might arise.  These tests will allow the establishment of the compressive behavior, 

ultimate strength, elastic modulus and critical points for strain on the stress-strain curve. 

 Soil testing at seasonally frozen temperatures is another important aspect in the behavior 

of reinforced concrete bridge columns as every system is supported on some sort of 

foundation that will be influenced by the response of the soil.  Furthermore, bridge columns 

that extend into the ground as drilled-shaft foundations, which are fully surrounded by soil, 

are becoming more common due to the simplicity of construction, lack of a column-

foundation connection and reduced construction costs.  Therefore, this research examines the 

impact of seasonal freezing on the behavior of soil that is common near bridge structures.  

The study was an exploratory investigation into multiple soil types to examine the variation 

in soil stress-strain curves by identifying changes in critical parameters (e.g., unconfined 

compressive strength and modulus of elasticity) and the impact on the lateral loading of 

columns supported by a cast-in-drilled-hole (CIDH) shaft.  The study investigated the 

influence of moisture content and unit weight at frozen temperatures to determine how they 

compare to the current understanding of warm weather behavior.  The emphasis of the testing 

program was towards a cohesive soil as there is a significant amount of research on 

permafrost, sands and silts.  The sandy and silty material was included in the study as most of 

the research has focused on the long term creep behavior of soils at frozen temperatures 

which is not ideal for a rapid loading situation commonly experienced in a seismic event. 
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Figure 1-9: Idealized stress-strain behavior of confined and unconfined concrete 

subjected to an axial loading 

1.4.2 Analytical Investigation 

 The analytical portion of the research presented within this document will take an in-

depth look at the current models used in practice today to account for SFSI and the behavior 

of current confinement equations in reinforced concrete bridge columns.  This will be 

completed through extensive literature reviews and computer modeling using open source 

software and packages used in industry.  Each study provides recommendations as to the 

advancement of the seismic design of reinforced concrete bridge columns whether supported 

on CIDH shafts or another type of foundation system. 

 The first major topic investigated in this document shall be the influence of SFSI on 

bridge columns supported on CIDH shafts.  Due to the systems being used on a more regular 

basis in practice, it is important to understand the behavior of both the column and 

foundation shaft when subjected to lateral loads under all conditions.  To better understand 

Terminology: 
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the behavior, a series of detailed computer based pushover analysis were performed and the 

results analyzed to compare with current simplified approaches for cohesionless soils.  In 

addition, a new simplified approach was constructed to consist of a cantilever column 

supported by a flexible foundation.  The flexible foundation method allows the system to be 

modeled in a computer based analysis program without having to include a significant 

amount of additional elements to handle the flexibility and resistance of the soil.  This is a 

companion model to a similar approach developed for cohesive soils in Shelman (2009). 

 The remainder of the analytical work consists of a detailed investigation into the 

improvement of the confinement equations used for horizontal reinforcement in critical 

regions of reinforced concrete bridge columns.  This includes a series of finite element 

analyses to establish moment-curvature, pushover and dynamic responses of multiple column 

heights and diameters with differing reinforcement ratios both horizontally and 

longitudinally.  The dynamic responses examine the impact of real demands from significant 

earthquakes within the field of seismic engineering and how the current models for 

confinement perform under these loads.  Using the results gained from these analyses a new 

confinement equation will be developed that takes into account the demands expected to be 

seen under real earthquake loads.  The new approach will then be analyzed in a similar 

manner and shown to be a better option for the establishment of horizontal reinforcement in a 

reinforced concrete bridge column. 

1.5 Chapter Layout 

 The information presented within this document will be provided in the form of articles 

written for submission to peer reviewed journals or conferences in the field of structural, 
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geotechnical and materials engineering.  Following the introductory chapter, Chapter 2 

presents the current state of the art in the field of seismic design for reinforced concrete 

bridge columns and the impacts of soil-foundation-structure-interaction.  Chapter 3, a 

companion paper to one provided in the appendix, examines the effects of soil-foundation-

structure-interaction and provides a new simplified model with the inclusion of seasonal 

freezing concerns for a cohesionless soil.  Chapter 4 provides a paper that characterizes the 

behavior of seasonally frozen soils for the seismic design of foundations.  Chapter 5 

examines the impact of freezing temperatures on the material behavior of confined and 

unconfined concrete.  Chapter 6 provides a conference style paper that presents research as to 

the impact on the seismic design of bridge columns using current equations in the appropriate 

guidelines for the establishment of adequate transverse confinement.  The final chapter of 

this document will provide a summary of all the research presented throughout and any final 

recommendations. 
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CHAPTER 2:  EXAMINATION OF THE CURRENT STATE OF THE ART 

 An adequate ductile design of bridge columns in high seismic regions requires a thorough 

understanding of the components involved within the entire structural system.  For a 

reinforced concrete bridge column this starts with the definition of material properties within 

the cross-section of the bridge column.  This includes the stress-strain behavior of the 

concrete within the cross-section, which includes both unconfined and confined concrete.  

This process relies on the use of theoretical models such as Mander et al. (1988) that were 

developed specifically for this purpose.  The definition of the confined concrete properties, 

however, is further complicated as it relies on the amount of transverse confinement 

reinforcement surrounding the core region of the cross-section, which is essential for 

ensuring a ductile bridge response.  Specifically, by providing spiral or hoop reinforcement, 

the concrete used in bridge columns is made possible to respond plastically, which allows the 

sudden and violent ground movement to be handled by limiting the seismic force imparted to 

the structure, enabling the structure to deform without significant degradation or collapse.  

Various design authorities specify how much of this transverse reinforcement is needed 

based on the size of the column by either a ratio of the volume of horizontal steel to volume 

of concrete, ρs, or by requiring the closed loop hoop steel to have a certain area (Ash) and 

spacing, s, within a given length along the concrete member.   

 In addition to the concrete material properties, the materials surrounding the foundation 

must be adequately addressed.  This is the case as the seismic ground motions enter the 
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structural system through this media.  Furthermore, the soil surrounding the foundation 

introduces additional flexibility and resistance to the overall system.  This additional 

flexibility and resistance influence the overall lateral response.  In columns continuously 

supported on drilled shaft foundations, the soil surrounding the foundation shaft significantly 

alters the lateral load response of the system as the resistance to movement is dictated by the 

stiffness of the surrounding soil.  The effects of seasonal freezing only further complicate the 

overall process as material properties are altered with the change in temperature. 

 The material property definition within the design allows for the local response of the 

system to be attained.  This information can then be used to extrapolate the global lateral 

force-displacement response of the structural system to ensure the desired performance.  

Extrapolation out to the global response can be performed using methodologies from a very 

detailed and complex finite element analysis to simple methodologies that use a minimal 

number of inputs.  This chapter investigates the available literature on the requirements for 

the definition of transverse confinement reinforcement, the definition of material properties 

with the inclusion of freezing temperatures and the design of columns continuously 

supported on drilled shaft foundations with the inclusion of soil-foundation-structure-

interaction (SFSI).  

2.1 Transverse Volumetric Ratio for Circular Columns 

 The wide discrepancy between the design and performance of reinforced concrete bridge 

columns in high seismic regions can be noted through the examination of design standards 

and guidelines published by the different authorities in the United States and world.  Thus, a 

comparison was made between various state departments of transportation, national and 
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worldwide standards, research outcomes and guidelines for the design of concrete 

confinement reinforcement.  The list below defines the resources used for establishing the 

comparison information for the seismic design in plastic hinge regions for transverse 

reinforcement.  The Alaska, Missouri and North Carolina Department of Transportations 

were listed on the list first as these locations have seismic requirements within their design 

guidelines in addition to federal requirements set forth by the Federal Highway 

Administration (FHWA), but the standards do not necessarily fit into a specific chronological 

order similar to the rest of the list.  The guidelines list was extended to include the American 

Concrete Institute’s – Building Code Requirements for Structural Concrete (ACI 318-08) and 

Commentary (ACI 318R-08) and the Standards New Zealand – Design of Concrete Structures 

(NZS 3101) as these two references adopt a similar philosophy to seismic design as those of 

the bridge design guidelines.  Furthermore, the New Zealand Transport Agency (formerly 

Transit New Zealand) states that the reinforced concrete design of bridges shall be performed 

in accordance with NZS 3101 (Transit New Zealand 2005).  

 Alaska Department of Transportation and Public Facilities (Alaska DOT&PF), 

Missouri Department of Transportation (MODOT) and North Carolina Department of 

Transportation (NCDOT); 

 Watson, S.; Zahn, F. A.; and Park, R., (1994); 

 Standards New Zealand – Design of Concrete Structures (NZS 3101: 1995); 

 Applied Technology Council (ATC) – Improved Seismic Design Criteria for 

California Bridges: Provisional Recommendations (ATC-32) (1996); 

 Caltrans - Bridge Design Specifications Manual (2003); 
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 South Carolina Department of Transportation - Seismic Design Specifications for 

Highway Bridges Version 2.0 (2008); 

 American Concrete Institute (ACI) – Building Code Requirements for Structural 

Concrete (ACI 318-08) and Commentary (ACI 318R-08); 

 Standards New Zealand – Design of Concrete Structures (NZS 3101: 2008); 

 AASHTO - Guide Specifications for LRFD Seismic Bridge Design 1
st
 Edition with 

2010 interim revisions (2010); 

 Caltrans - Seismic Design Criteria Version 1.6 (2010); and 

 AASHTO – LRFD Bridge Design Specifications (2012). 

2.1.1 Bridge Manual of Transit New Zealand 

 In the 1994 issue of the Bridge Manual of Transit New Zealand a set of equations were 

provided to quantify the appropriate amount of transverse reinforcement for concrete 

confinement.  The equation provided in the 1994 edition of the standards is provided herein 

as Eq. (2-1) and is based on the required curvature ductility, axial load ratio, strength 

reduction factor and ratio of gross concrete area to core concrete area.  Terms such as the 

curvature ductility and strength reduction factor are taking into account the local section 

design and resistance factors common in load and resistance factored design (LRFD).  The 

presence of the curvature ductility requirement highlights the importance of considering 

demand within the establishment of the horizontal confinement reinforcement.  The 

requirements specified for the design in this particular methodology is based on a 

displacement ductility of six at the ultimate limit state which results in the curvature ductility 

design being a value of 10 for potential plastic hinge regions above the bottom story.  For the 
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bottom story, a curvature ductility of 20 is required.  It is important to note that the 

information input into this equation should be in megapascals and millimeters during 

computations.  
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-                         Eq. (2-1) 

  where: s       = center to center spacing of transverse reinforcement; 

h″  = dimension of core of column at right angles to direction of transverse  

  bars under consideration;  

Ag  = gross area of column; 

Ac = core area of column; 

  

  
  = curvature ductility factor required; 

    = ultimate curvature; 

    = curvature at first yield; 

pt  = Ast/Ag; 

Ast  = total area of longitudinal column reinforcement; 

m  =           
  ; 

fy = lower characteristic yield strength of longitudinal steel; 

fyt  = lower characteristic yield strength of transverse steel; 

    = axial compressive load on column; and 

   = strength reduction factor = 0.85 for columns not protected by capacity  

  design.  
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2.1.2 Watson et al. (1994) 

These three researchers published a slightly different equation than the New Zealand 

equation in Section 2.1.1.  The two equations differ by the value stated for use as the 

constant.  In Watson et al. (1994) a value of 0.008 is published for use compared to the stated 

value of 0.0084 in the Bridge Manual of Transit New Zealand (1994).  Although a slight 

difference is noted, there was no justification provided as to why there was a difference.  

Additionally, for low axial load ratios (ALR),      
    , in compression, the equation 

typically results in a negative number for the amount of confinement reinforcement within a 

cross-section.   The same problem would occur for ALR that are in tension.  Although this 

was the case, the researchers indicated that the current code provided a minimum amount of 

reinforcement that was deemed adequate at small ALR ratios.  When positive volumetric 

ratios are obtained, the values are essentially identical to those specified in the Eq. (2-1) and 

thus the equation was not reproduced here.  The researchers further indicated that when a 

more detailed ductility calculation is not needed a curvature ductility of 20 was sufficient for 

a ductile design, and a curvature ductility of 10 was sufficient for a limited ductile design.  

2.1.3 ATC-32 (1996) 

The Applied Technology Council (ATC) did a study to improve the seismic behavior of 

California bridges.  In their final recommendations, they provided an equation, Eq. (2-2), to 

find the horizontal volumetric reinforcement ratio for spirally reinforced columns inside and 

outside the plastic hinge region. 
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  where:    
      = expected concrete strength; 

fye  = expected yield strength of the reinforcement; 

P = column axial load; 

Ag  = gross column area; and 

l  = longitudinal reinforcement ratio. 

This equation utilizes the geometric properties and material properties, but was expanded 

to take into account the effects of the column axial load and the longitudinal reinforcement 

ratio.  The inclusion of these additional parameters, make this approach the most detailed 

recommendation proposed in the United States.  Although the detailed approach is defined by 

ATC, an additional requirement within the plastic end regions of ductile columns is 

specified.  This requirement states that the volumetric ratio shall not be less than the value 

obtained from the previous equation, nor less than, Eq. (2-3), which is an anti-buckling 

requirement for the longitudinal bars and is not specifically for confinement alone. 

                          Eq. (2-3) 

  where: nb     = the number of longitudinal bars contained by the spiral or circular hoop 

A second equation that accounts for the issue of anti-buckling within this text relates to 

the spacing needed between the spiral loops.  This particular equation, Eq. (2-4), accounts for 

steel reinforcement that has an ultimate strength to yield strength ratio of less than 50%. 

    [   (
  

  
- )]                  Eq. (2-4) 

  where:         = ultimate strength of the reinforcement; 
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fy  = yield strength of the reinforcement; and 

dbl  = diameter of longitudinal reinforcement. 

2.1.4 Alaska DOT&PF, MODOT and NCDOT 

In the states of Alaska, Missouri and North Carolina, regions of high seismicity are 

present based on the past history of earthquakes and proximity to nearby known faults 

(USGS 2012).  Although these sections of the United States are at risk for high ground 

motions, they do not maintain a specific set of standards or guidelines for use in the seismic 

design of bridges and structures (MODOT 2012, NCDOT 2012).  Instead, they generally 

refer to the overall governing standards for the United States, typically considered to be the 

AASHTO LRFD Bridge Design Specifications (2012) and AASHTO Guide Specifications for 

LRFD Seismic Bridge Design (2010).  For these specific states, it is important to note that 

this means the information presented in Sections 2.1.9 and 2.1.11 are the values for which 

confinement reinforcement must be met.  

2.1.5 Caltrans Bridge Design Specifications Manual (2003) 

Prior to the Seismic Design Criteria (SDC) used in practice today, Caltrans had a bridge 

design manual that provided specific requirements about the design of columns for all 

conditions.  This set of specifications state that ties are permitted only where it is not 

practical to use spiral or circular hoop reinforcement.  Additionally, the 2003 manual by 

Caltrans provided three equations to specify a volumetric ratio for the transverse 

reinforcement.  The first and second equations, Eq. (2-5) and Eq. (2-6), are very similar to 

ACI and AASHTO approaches, but take into consideration the impact of the column axial 
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load as was the case in the ATC-32 specifications.  Eq. (2-5) applies only when the column 

diameter is less than 3 ft (900 mm) in the plastic hinge region.  Eq. (2-6) applies when the 

column diameter is greater than the limits applied to Eq. (2-5). 
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)         Eq. (2-5) 

  where:   
       = specified compressive strength of concrete; 

fyh  = specified yield strength of transverse reinforcement not to exceed  

  100,000 psi; 

Ag  = gross area of a concrete section; 

Ac  = cross-sectional area of a structural member measured to the outside 

    edges of transverse reinforcement; and 

Pe  = column axial load. 
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)          Eq. (2-6) 

  where:   
       = specified compressive strength of concrete; 

fyh  = specified yield strength of transverse reinforcement not to exceed  

    100,000 psi; 

Ag  = gross area of a concrete section; and 

Pe  = column axial load. 

The third equation presented within this document, Eq. (2-7), appears throughout many 

of the references from the United States.  This particular equation was recommended by 

many organizations as the intention is to ensure that the core of the column can sustain the 
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axial load after the exterior cover concrete has spalled off of the section (ACI 2008).  The 

third equation was also intended to be a minimum amount of steel required within the plastic 

zone as this was the amount of steel needed to be provided outside the ductile region. 

         (
  

   
- )

  
 

   
            Eq. (2-7) 

  where:   
       = specified compressive strength of concrete; 

fyt  = specified yield strength of transverse reinforcement not to exceed  

  100,000 psi; 

Ag  = gross area of a concrete section; and 

Ach  = cross-sectional area of a structural member measured to the outside  

  edges of transverse reinforcement. 

2.1.6 South Carolina DOT Seismic Design Specifications (2008) 

The South Carolina Department of Transportation (SCDOT) provides a set of design 

specifications that must be followed for highway bridge design when subjected to seismic 

conditions (SCDOT 2008).  The specifications state that spiral reinforcement is not allowed 

in a ductile design within the plastic hinge region of cast-in-place concrete, but rather the use 

of butt-welded hoops is required.  Additionally, the design specifications state that the 

transverse reinforcement shall be sufficient to ensure adequate shear capacity and 

confinement with the inclusion that the quantity of reinforcement meets the requirements of 

Eq. (2-8).  This equation, however, commonly appears as horizontal reinforcement 

requirements within joint regions between columns and beams (AASHTO 2010).  Due to this 
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being used as a joint requirement, the suggested equation was not included within later 

comparisons. 

     
      

   
             Eq. (2-8) 

  where: s      = volumetric ratio of transverse reinforcement; 

Ast  = total area of longitudinal reinforcement in the column/shaft; and 

lac = anchorage length for longitudinal column reinforcement. 

Besides the plastic hinge region, the SCDOT (2008) states that the transverse 

reinforcement outside of the plastic hinge region shall not be placed more than twice the 

spacing of the reinforcement in the plastic hinge region.  Other information about the 

maximum spacing of transverse reinforcement meets the same requirements typically 

provided in AASHTO (2012) with those being the minimum of the following: 

 Six inches inside the plastic hinge region; 

 One-fifth the least dimension of the cross-section in columns or one-half the least 

cross-sectional dimension of piers; 

 Six times the nominal diameter of the longitudinal reinforcement; and 

 12 inches outside the plastic hinge region. 

2.1.7  ACI 318-08 

The American Concrete Institute (ACI) Building Code Requirements for Structural 

Concrete and Commentary (ACI 2008) typically governs the concrete design of buildings 

and other structures.  Although this is important to note, it is an appropriate source to 
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examine for the requirements of transverse reinforcement as it still deals with the design of 

columns subjected to lateral loading.  In this set of requirements, two equations are provided 

to meet for the design of transverse reinforcement.  The first one, Eq. (2-9), comes from 

Chapter 21 of ACI 318-08 and states that the volumetric ratio of spiral or circular hoop 

reinforcement, ρs, shall not be less than this value.  The commentary of this guideline states 

that the value was specified to ensure adequate flexural curvature capacity in yielding regions 

(ACI 2008). 

         
  
 

   
             Eq. (2-9) 

  where:   
       = specified compressive strength of concrete; and 

fyt  = specified yield strength of transverse reinforcement not to exceed  

  100,000 psi. 

The second equation, Eq. (2-10), previously stated in Section 2.1.5 of this report comes 

from Chapter 10 of ACI 318-08 and specifies that the volumetric ratio shall not be less than 

this value, which ensures sufficient capacity after spalling of the cover concrete. 

         (
  

   
- )

  
 

   
         Eq. (2-10) 

  where:   
       = specified compressive strength of concrete; 

fyt  = specified yield strength of transverse reinforcement not to exceed  

  100,000 psi; 

Ag  = gross area of a concrete section; and 

Ach  = cross-sectional area of a structural member measured to the outside  
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  edges of transverse reinforcement. 

Although these equations are used to specify the amount of reinforcement needed for 

buildings and other structures, both equations are identical to the equations presented in 

AASHTO (2012).  This is because both organizations want the desired behavior of concrete 

to be similar and the values produced by these equation came from numerous axially load 

tests on concrete columns. 

2.1.8 Bridge Manual of Transit New Zealand (2005) and NZS 3101 (2008) 

Since 1994, the Bridge Manual of Transit New Zealand has undergone revisions with one 

of the latest being from 2005.  In this set of guidelines, the design process for concrete 

columns is now referred to the Design of Concrete Structures Standard produced by the 

Standards New Zealand Council (2008).  In this standard, the amount of transverse 

reinforcement is required to meet different levels depending on whether or not it falls within 

a potential ductile plastic hinge region.  In either approach, the updated standard provides a 

new equation, Eq. (2-11) or Eq. (2-12), that has been simplified from the 1994 version.  Eq. 

(2-11) is the requirement to be met for confinement in general while Eq. (2-12) applies in the 

ductile plastic hinge region.  This is a similar approach to that of Caltrans (2003) in which 

equations were given for the ductile and non-ductile zones.  As in the other New Zealand 

equation, the units to be used are megapascals and millimeters.  

     
( -   )

   

  

  

  
 

   

  

   
   

-              Eq. (2-11) 

  where: Ag     = gross area of column; 

Ac  = core area of column measured to the centerline of the confinement  
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  reinforcement; 

pt  = Ast/Ag; 

Ast  = total area of longitudinal column reinforcement; 

m  =           
  ; 

fy  = lower characteristic yield strength of longitudinal steel; 

fyt  = lower characteristic yield strength of transverse steel; 

    = axial compressive load on column; and 

   = strength reduction factor = 0.85 for columns not protected by capacity  

  design. 

     
(   -   )

   

  

  

  
 

   

  

   
   

-             Eq. (2-12) 

  where: Ag     = gross area of column; 

Ac  = core area of column; 

pt  = Ast/Ag; 

Ast  = total area of longitudinal column reinforcement; 

m  =           
  ; 

fy  = lower characteristic yield strength of longitudinal steel; 

fyt  = lower characteristic yield strength of transverse steel; 

     = axial compressive load on column; and 

  = strength reduction factor = 0.85 for columns not protected by capacity  

  design. 
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The main difference between Eq. (2-1) and Eqs. (2-11) and (2-12) is that the curvature 

ductility term and a number of other constants were removed, thus simplifying the amount of 

input information required.  Additionally, limits were placed on values within the equations.  

These limits include the following: 

 Ag/Ac shall not be greater than 1.5 unless it can be shown that the design strength of 

the column core can resist the design actions; 

 pt*m shall not be greater than 0.4; and 

 fyt shall not exceed 800 MPa. 

Besides the requirements specified above, NZS 3101 states that the columns must be 

designed with an adequate amount of transverse reinforcement such that premature buckling 

does not occur.  Again, the buckling equation is dependent on whether or not the design is 

taking place within a potential ductile plastic hinge region.   Thus, Eq. (2-13) presented 

herein applies outside the ductile hinge region while Eq. (2-14) applies within the ductile 

hinge region. 

     
   

     

  

   

 

  
          Eq. (2-13) 

  where: Ast    = total area of longitudinal column reinforcement; 

fy  = lower characteristic yield strength of longitudinal steel; 

fyt  = lower characteristic yield strength of transverse steel; 

d″  = depth of concrete core of column measured from center to center of  

  peripheral rectangular hoop, circular hoop or spiral; and 

db  = diameter of reinforcing bar. 
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          Eq. (2-14) 

  where: Ast    = total area of longitudinal column reinforcement; 

fy  = lower characteristic yield strength of longitudinal steel; 

fyt  = lower characteristic yield strength of transverse steel; 

d″  = depth of concrete core of column measured from center to center of  

  peripheral rectangular hoop, circular hoop or spiral; and 

db  = diameter of reinforcing bar. 

2.1.9 AASHTO Guide Specifications for LRFD Seismic Bridge Design (2010) 

The LRFD Bridge Design Specifications by AASHTO (2012) have been modified by a 

second set of guide specifications.  This specification specifically addresses the seismic 

design of bridges (AASHTO 2010).  In this set of guidelines, additional requirements on the 

amount of transverse reinforcement have been provided.  These requirements for the 

volumetric ratio of transverse reinforcement in the core of the column do not take into 

account the column size or strength.  The specifications, however, are based on the seismic 

design category for which they are designed.  These values are provided in Eq. (2-15) and 

Eq. (2-16) and are minimum values for the design levels.   

 For Seismic Design Category B: 

                    Eq. (2-15) 

 For Seismic Design Categories C and D: 

                    Eq. (2-16) 
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The spacing requirements suggested in the AASHTO Seismic Bridge Design 

Specifications (2010) are the same as those provided in Section 2.1.2 for the SCDOT.  For 

this reason they are not reproduced in this section.  

2.1.10 Caltrans Seismic Design Criteria (2010) 

Similar to the SCDOT, Caltrans has a specific set of seismic design criteria (SDC) (2010) 

that a design engineer must meet.  The main idea presented in the design criteria is that 

enough confinement reinforcement must be provided such that the performance requirements 

as set by the Department of Transportation are adequately met in addition to the federal 

requirements of the FHWA.  The performance requirements in the document are based on 

laboratory testing with fixed base cantilever columns.  Additionally, the cantilever column 

and fixed-fixed column use the same detailing for geometry as well as horizontal and 

transverse reinforcement.  This assumption and the laboratory testing resulted in the 

specifications such thata single member must have a minimum displacement ductility 

capacity of three.  In addition to the capacity requirements, the sections must be designed 

such that the global demand displacement ductility meets the following criteria: 

 Single Column Bents supported on fixed foundation    D  ≤  4; 

 Multi-Column Bents supported on fixed or pinned footings   D  ≤  5; 

 Pier Walls (weak direction) supported on fixed or pinned footings  D  ≤  5; 

and 

 Pier Walls (strong direction) supported on fixed or pinned footings  D  ≤  1. 
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The intention of the displacement ductility values prescribed within the SDC is that the 

designer shall perform an inelastic pushover analysis to ensure the prescribed global 

displacement ductility is met.  In this process the designer is also expected to ensure that the 

minimum displacement ductility of three is met for each member of the system. From this 

analysis, the amount of confinement reinforcement is determined such that the displacement 

ductility performance requirements are met.  Furthermore, to prevent reinforcement 

congestion and higher ductility demand for an earthquake, the general practice is to keep an 

aspect ratio of the column to four or above.  Once the ductile region design has been 

completed, SDC (2010) specifies that the transverse reinforcement outside the ductile region 

need not be less than half the amount of confinement reinforcement within the plastic hinge 

region.  

2.1.11 AASHTO LRFD Bridge Design Specifications (2012) 

The LRFD bridge design specifications published by AASHTO (2012) have numerous 

requirements on the amount of transverse reinforcement needed in a circular column, but are 

the exact same as those provided by ACI in Section 2.1.7 of this report.  The equations for 

the volumetric ratio within the plastic hinge region that must be satisfied are reproduced 

again as Eq. (2-17) and Eq. (2-18). 

           
  
 

  
          Eq. (2-17) 

  where: s      = volumetric ratio of transverse reinforcement; 

  
  = specified compressive strength of concrete at 28 days, unless another  

  age is specified; and 
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fy  = yield strength of reinforcing bars. 

         (
  

  
- )

  
 

   
         Eq. (2-18) 

  where: s      = volumetric ratio of transverse reinforcement; 

Ag  = gross area of concrete section; 

Ac  = area of core measured to the outside diameter of the spiral; 

  
  = specified compressive strength of concrete at 28 days, unless another  

  age is specified; and 

fyh  = specified yield strength of spiral reinforcement. 

The amount of reinforcement required must also meet some additional spacing 

requirements similar to those specified by the SCDOT (2008) and ACI 318-08 (2008).  These 

details are listed below: 

 Clear spacing of the bars not less than 1 in. or 1.33 times the maximum aggregate 

size; 

 The center to center spacing not greater than six times the diameter of the longitudinal 

bars; 

 Spacing less than 4.0 in. in the confined region and 6.0 in. in non-confined regions; 

and 

 Spacing less than one-quarter the minimum member dimension in the confined 

regions. 
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In addition to the spacing requirements and values of volumetric ratio of transverse 

reinforcement, a minimum amount of transverse reinforcement is required for shear both 

inside and outside the plastic hinge region. 

2.2 Transverse Reinforcement Area Based Equations 

Even though many guidelines provide information in regards to the volumetric ratio of 

horizontal reinforcement, s, some specifications provide transverse reinforcement details in 

the form of a specified area.  This approach accounts for systems in which it may be 

beneficial to know the amount of area required for reinforcement instead of a volumetric 

ratio.  For example, the area of transverse reinforcement may be more beneficial when there 

are two directions of concern with a column or beam having dimensions of cross-sections 

that vary in the principal direction of applied loading.    To better understand all the possible 

equations that may come into confinement reinforcement, the area specifications and 

guidelines were also examined to demonstrate the differences that arise.  Once the area of 

steel reinforcement is known for a given design, a volumetric ratio can be calculated to 

compare with other approaches if assumptions are made about the geometric dimensions of 

the column.  In this section, it was assumed when appropriate that there was a column with 

equal dimensions in the primary directions was used along with a consistent area and number 

of reinforcement legs in either direction if a volumetric ratio is provided.   

By assuming a column of this type with equal amounts of transverse reinforcement in 

either direction, the volumetric ratio of column can be computed using Eq. (2-19) and 

substituting the appropriate area equation in for Ast.  The substituted area equation, however, 

must be divided by a factor of 2 as the reinforcement area computed will be used in a 
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minimum of two legs within the column cross-section.  It is noted that Eq. (2-19) is a 

summation of the total volumetric ratio within the cross-section (i.e., s = sx + sy). 

     
    

   
          Eq. (2-19) 

  where: Ast    = area of transverse reinforcement; 

D′  = dimension of core measured from center to center of transverse  

  reinforcement; 

s  = center to center spacing of transverse reinforcement; and 

s  = total volumetric ratio of transverse reinforcement. 

The list below defines the resources used for establishing the comparison information 

provided in the rest of Section 2.2 of this report based on the chronological history of the 

equations used in the seismic design of bridge columns.  The resources were selected to 

match the documents chosen within Section 2.1 of this report where select references not 

related to bridge column design were included based on design philosophy.  The list was 

extended to include the Code for Design of Concrete Structures for Buildings published by 

the Canadian Standards Association (1994) and the Standard Specification for Concrete 

Structures 2007 “Design” published by the Japan Society of Civil Engineers (2010).  These 

particular resources were selected for inclusion to expand the number of resources from high 

seismic regions of the world that conduct additional research into confinement of reinforced 

concrete columns.  Furthermore, they were included within this section as they did not 

directly provide equations for the volumetric ratio of transverse reinforcement. 
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 Canadian Standards Association - Code for Design of Concrete Structures for 

Buildings (CAN3-A23.3-M94) (1994); 

 Watson, S.; Zahn, F. A.; and Park, R., (1994); 

 Priestley, M. J.; Seible, F.; and Calvi, G. M.  – Seismic Design and Retrofit of Bridges 

(1996); 

 Applied Technology Council (ATC) – Improved Seismic Design Criteria for 

California Bridges: Provisional Recommendations (ATC-32) (1996); 

 Caltrans - Bridge Design Specifications Manual (2003); 

 American Concrete Institute (ACI) – Building Code Requirements for Structural 

Concrete (ACI 318-08) and Commentary (ACI 318R-08); 

 Standards New Zealand – Design of Concrete Structures (NZS 3101: 2008); 

 AASHTO - Guide Specifications for LRFD Seismic Bridge Design 1
st
 Edition with 

2010 interim revisions (2010) ; 

 Japan Society of Civil Engineers – Standard Specification for Concrete Structures 

2007 “Design”  (2010); 

 Caltrans – Seismic Design Criteria Version 1.6 (2010); and 

 AASHTO – LRFD Bridge Design Specifications (2012). 

2.2.1 Watson et al.  (1994) 

The research provided in this reference is similar to the NZS 3101 (2008) equations with 

some of the noted differences being that extra parameters are included and the anti-buckling 

requirements are not directly discussed with these volumetric equations.  When the equation 

is converted from the area approach to volumetric ratio based on the column with equal 

reinforcement all around, Eq. (2-20) is attained.  When extrapolating this equation out to the 

effective lateral confining stress assuming a curvature ductility of 20, a longitudinal steel 

ratio of two percent, a ratio of gross to core area of concrete of 1.22, material property ratio 

of 0.066 and an axial load ratio of 40% (to ensure positive numbers), the coefficient of 

effectiveness would end up being a value of 0.67 to match the effective lateral confining 

stress associated with the spiral reinforcement equation assuming a 0.95 coefficient of 

effectiveness.  Priestley et al. (1996) suggests a coefficient of effectiveness of 0.95 for 
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circular sections, 0.75 for rectangular and 0.6 for rectangular walls.  Thus, the effectiveness 

of 0.67 seems to fall within a reasonable range. 

       (

  
  

         

   

  

  

  
 

   

 

   
   

      )      Eq. (2-20) 

  where: s       = center to center spacing of transverse reinforcement; 

h″  = dimension of core of column at right angles to direction of transverse  

  bars under consideration; 

Ag  = gross area of column; 

Ac  = core area of column; 

  

  
  = curvature ductility factor required; 

    = ultimate curvature; 

    = curvature at first yield; 

pt  = Ast/Ag; 

Ast  = total area of longitudinal column reinforcement; 

m  =           
  ; 

fy  = lower characteristic yield strength of longitudinal steel; 

fyt  = lower characteristic yield strength of transverse steel; 

    = axial compressive load on column; and 

   = strength reduction factor = 0.85 for columns not protected by capacity  

  design. 
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2.2.2 Priestley et al. (1996)  

In the Seismic Design and Retrofit of Bridges book by Priestley (1996), an area equation 

was provided.  Instead of reproducing that equation here, the volumetric ratio form, once 

rearranged using the aforementioned process, is provided in this document.  The resulting 

equation, Eq. (2-21) is very similar to the ATC-32 (1996) approach with the only difference 

being the assumption that rectangular hoops are not as efficient as circular hoops.  Thus, the 

multipliers in Eq. (2-21) are 50% and 100% higher than the spiral equation.  When this 

approach is extrapolated out to the effective lateral confining stress using a five percent ALR, 

a two percent longitudinal reinforcement ratio and a ratio of material properties of 0.066, a 

coefficient of 0.6 would be needed to match the spiral equation with a coefficient of 

effectiveness of 0.95. 

         
   
 

   
[    

     

   
   

]        -           Eq. (2-21) 

  where:    
      = expected concrete strength; 

fye  = expected yield strength of the reinforcement; 

P = column axial load; 

Ag  = gross column area; and 

l  = longitudinal reinforcement ratio. 

Anti-buckling requirements are specified by Priestley et al. (1996) in which a certain 

amount of horizontal reinforcement must be provided to ensure that the longitudinal bar does 

not buckle prematurely.  The two equations are the same as those presented within Section 
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2.1.3 of this report.  These equations are based on the number of longitudinal bars present in 

the cross-section and diameter of the longitudinal bar. 

2.2.3 ATC-32 (1996) and Caltrans (2003)  

In these two different approaches from the bridge manual published by Caltrans and the 

ATC-32 final recommendations, the resulting equations are the same as those published by 

Priestley et al. (1996).  This means that they produce the same equation as provided in Eq. 

(2-21) for the design of columns with rectangular tie reinforcement.  Thus, the equation is not 

reproduced herein.   

2.2.4 ACI 318-08 

Just like the spiral reinforcement equations, ACI provides two equations to give 

minimum area values for rectangular hoop reinforcement for rectangular columns.  These 

equations are presented here as Eq. (2-22) and Eq. (2-23). 

         
     

 

   
[(

  

   
) - ]        Eq. (2-22) 

  where: Ash    = total area of hoop reinforcement; 

  
  = specified compressive strength of concrete; 

fyt  = specified yield strength of transverse reinforcement not to exceed  

  100,000 psi; 

Ag  = gross area of a concrete section; 

Ach  = cross-sectional area of a structural member measured to the outside  

  edges of transverse reinforcement; 

s  = center to center spacing of transverse reinforcement; and 
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bc  = cross-sectional dimension of member core measured to the outside  

  edges of the transverse reinforcement composing area Ash.   

 

          
     

 

   
          Eq. (2-23) 

  where: Ash    = total area of hoop reinforcement; 

  
   = specified compressive strength of concrete; 

fyt  = specified yield strength of transverse reinforcement not to exceed  

  100,000 psi; 

Ag  = gross area of a concrete section; 

Ach  = cross-sectional area of a structural member measured to the outside  

  edges of transverse reinforcement; 

s  = center to center spacing of transverse reinforcement; and 

bc  = cross-sectional dimension of member core measured to the outside 

  edges of the transverse reinforcement composing area Ash. 

Rearranging the above equations and solving for the volumetric ratio Eqs. (2-24) and (2-

25) are produced. 

        (
  
 

   
) [

  

   
- ]         Eq. (2-24) 

  where:   
       = specified compressive strength of concrete; 

fyt  = specified yield strength of transverse reinforcement not to exceed  
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  100,000 psi; 

Ag  = gross area of a concrete section; and 

Ach  = cross-sectional area of a structural member measured to the outside  

  edges of transverse reinforcement. 

         
  
 

   
          Eq. (2-25) 

  where:   
       = specified compressive strength of concrete; and 

fyt  = specified yield strength of transverse reinforcement not to exceed  

  100,000 psi. 

The above two equations, when compared back to Eqs. (2-9) and (2-10) are very similar 

in that the only difference is the multiplier at the beginning of the equations.  Upon closer 

inspection, Eqs. (2-9) and (2-10) are obtained when Eq. (2-24) is multiplied by 75% and Eq. 

(2-25) by 66.5%.  Thus, the specifications are assuming that additional steel is required when 

using rectangular hoops when compared to circular hoops and spirals for the confinement 

reinforcement.  Similar to the prior sections, when the data is extrapolated out to the effective 

lateral confining stress, a coefficient of effectives for Eq. (2-23) and Eq. (2-24) would be 

0.71 and 0.63, respectively.  These assumptions are once again similar to the 

recommendations of Priestley et al. (1996) for the assumption on the effectiveness of the 

reinforcement.  

2.2.5 NZS 3101 (2008) 

The New Zealand concrete structure code states that the cross sectional area of 

rectangular hoop or tie reinforcement shall not be less than that given by the greater of four 
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different equations.  Two of the equations are applicable to regions that are not expected to 

be ductile hinging regions and the other two are for regions with ductile hinging expected.  In 

each set of equations the reinforcement must be greater than the two values produced.  One 

of the equations is for anti-buckling and the other is just a set requirement that must be met.  

The equations for the ductile plastic hinge region are provided as Eq. (2-26) and Eq. (2-27) 

with the latter being for anti-buckling.  These equations have the same form as the prior 

equations based on spiral reinforcement and must be in units of megapascals and millimeters.  

      
(   -   )   

  

   

  

  

  
 

   

  

   
   

         
        Eq. (2-26) 

  where: Ag     = gross area of column; 

Ac  = core area of column; 

pt  = Ast/Ag; 

Ast  = total area of longitudinal column reinforcement; 

m  =           
  ; 

fy  = lower characteristic yield strength of longitudinal steel; 

fyt  = lower characteristic yield strength of transverse steel; 

    = axial compressive load on column; 

  = strength reduction factor = 0.85 for columns not protected by  

  capacity design; 

sh  = center to center spacing of hoop sets; 

    = dimension of core of column at right angles to direction of  

  transverse bars under consideration; and 
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   = specified compressive strength of concrete. 

      
      

       
          Eq. (2-27) 

  where: Ab   = sum of the area of the longitudinal bars reliant on the tie; 

fy  = lower characteristic yield strength of longitudinal steel; 

fyt  = lower characteristic yield strength of transverse steel; 

s  = center to center spacing of stirrup-ties along member; and 

db = diameter of reinforcing bar. 

When converted to an equation for spiral volumetric ratio using the process provided in 

the prior sections, Eq. (2-28) and Eq. (2-29) are produced.  When adjusted to examine the 

impacts on the effective lateral confining stress, the first equation results in an effectiveness 

coefficient of 0.64 when matching the value of confining stress using a 0.95 coefficient of 

effectiveness.  It is assumed that the anti-buckling equation would result in a similar 

comparison.   

     
 (   -   )

   

  

  

  
 

   

  

   
   

             Eq. (2-28) 

  where: Ag     = gross area of column; 

Ac  = core area of column; 

pt  = Ast/Ag; 

Ast  = total area of longitudinal column reinforcement; 

m  =           
  ; 

fy  = lower characteristic yield strength of longitudinal steel; 
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fyt  = lower characteristic yield strength of transverse steel; 

    = axial compressive load on column; 

  = strength reduction factor = 0.85 for columns not protected by capacity  

  design; and 

  
   = specified compressive strength of concrete. 

     
      

        
           Eq. (2-29) 

  where: Ab   = sum of the area of the longitudinal bars reliant on the tie; 

fy  = lower characteristic yield strength of longitudinal steel; 

fyt  = lower characteristic yield strength of transverse steel; 

db  = diameter of reinforcing bar; and 

d″  = depth of concrete core of column measured from center to center of 

  peripheral rectangular hoop, circular hoop or spiral. 

Outside the ductile hinge regions, NZS 3101 provides a series of equations that are about 

the same as Eqs. (2-11) and (2-13).  The main difference once again was that the governing 

agency determined that ties were less efficient than spiral reinforcement.  This is seen when 

comparing the effective lateral confining stress and the associated coefficient of 

effectiveness.  In this instance the coefficient of effectiveness was found to be 0.58 when 

compared to the spiral effectiveness with a coefficient of 0.95.  A similar trend is expected 

for the anti-buckling equations of NZS 3101. The resulting volumetric ratio equations are 

provided herein as Eq. (2-30) and Eq. (2-31) with the latter being the anti-buckling 

requirements. 
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   -    

   

  

  

  
 

   

  

   
   

-             Eq. (2-30) 

  where: Ag     = gross area of column; 

Ac  = core area of column; 

pt  = Ast/Ag; 

Ast  = total area of longitudinal column reinforcement; 

m  =           
  ; 

fy  = lower characteristic yield strength of longitudinal steel; 

fyt  = lower characteristic yield strength of transverse steel; 

    = axial compressive load on column; 

  = strength reduction factor = 0.85 for columns not protected by capacity  

  design; and 

  
   = specified compressive strength of concrete. 

     
      

         
           Eq. (2-31) 

  where: Ab   = sum of the area of the longitudinal bars reliant on the tie; 

fy  = lower characteristic yield strength of longitudinal steel; 

fyt  = lower characteristic yield strength of transverse steel; 

db  = diameter of reinforcing bar; and 

d″  = depth of concrete core of column measured from center to center of  

  peripheral rectangular hoop, circular hoop or spiral. 
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2.2.6 Japan Society of Civil Engineers (2010) 

Although an equation for the spiral volumetric ratio or area of hoop reinforcement 

required for concrete columns was not provided, an area requirement was stated within the 

concrete design specifications for seismic considerations.  Specifically, Eq. (2-32) was 

provided for columns that use spiral reinforcement and defines the converted cross-sectional 

area of spirals, Aspe, which reduces the spiral area based on the spacing within the column.  

This value must be less than 3% of the effective cross-section (i.e., the core section of the 

column). 

       
       

 
                Eq. (2-32) 

  where: dsp     = diameter of the effective cross section of spiral reinforced column; 

Asp  = cross sectional area of spiral reinforcement; 

Ac  = effective cross-section of the column; and 

s  = spacing of spiral reinforcement. 

When rearranged and solved for the volumetric ratio, the following expression, Eq. (2-

33), was found for the horizontal reinforcement needed when using spiral reinforcement in a 

column design. 

     
     

  
 

        

 
         Eq. (2-33) 

  where: dsp     = diameter of the effective cross section of spiral reinforced column; 

Asp  = cross sectional area of spiral reinforcement; and 

s  = spacing of spiral reinforcement. 



www.manaraa.com

61 

 

2.2.7 AASHTO LRFD Bridge Design Specifications (2012) 

According to the bridge design specifications published by AASHTO (2012) the 

reinforcement in a rectangular column with rectangular hoop reinforcement, the total gross 

sectional area, Ash, shall satisfy either Eq. (2-34) or Eq. (2-35). 

                 
  
 

  
[
  

  
- ]        Eq. (2-34) 

  where: Ash    = total cross-sectional area of tie reinforcement, including 

  supplementary cross-ties having a spacing of s and crossing a section  

  having a core dimension hc; 

hc  = core dimension of tied column in the direction under consideration; 

s  = vertical center to center spacing of hoops, not exceeding 4.0 in.; 

Ac  = area of column core; 

Ag  = gross area of column; 

fc
 
 = specified compressive strength of concrete; and 

fy  = yield strength of tie or spiral reinforcement. 

              
  
 

  
          Eq. (2-35) 

  where: Ash    = total cross-sectional area of tie reinforcement, including  

  supplementary cross-ties having a spacing of s and crossing a section  

  having a core dimension hc; 

hc  = core dimension of tied column in the direction under consideration; 

s  = vertical center to center spacing of hoops, not exceeding 4.0 in.; 



www.manaraa.com

62 

 

fc
 
  = specified compressive strength of concrete; and 

fy  = yield strength of tie or spiral reinforcement. 

Similar to ACI’s requirements, AASHTO provided two equations based on different 

variables for the required area of transverse reinforcement.  Note that the first equation 

provided by ACI 318-08 (2008) as stated in Eq. (2-22) is identical to Eq. (2-34), and the 

second equation of ACI 318-08 (2008), Eq. (2-23), differs from AASHTO within the 

coefficient by AASHTO’s coefficient being 33% higher.  Using the same process as in the 

ACI area computations, Eq. (2-35) was rearranged and solved for the volumetric ratio.  The 

result was Eq. (2-36) where the ratio between the ACI and AASHTO approaches is still a 

33% increase.  Additionally, Eq. (2-36) results in a coefficient of effectiveness of 0.5 to 

match the effective lateral confining stress of a spiral section with a coefficient of 

effectiveness of 0.95 and a material ratio of 0.066. 

         
  

 

   
          Eq. (2-36) 

  where:   
       = specified compressive strength of concrete; and 

fyt  = specified yield strength of transverse reinforcement not to exceed  

  100,000 psi. 

As a side note, Eq. (2-36) is identical to that of the 1994 Canadian Code (CAN3-A23.3-

M94) for the design of concrete structures (Bayrak and Sheikh 2004). 
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2.3 Comparison of Available Confinement Equations 

Across the world, there are many different approaches for determining the amount of 

confinement as well as which parameters are important in the lateral design process.  Some 

of the older approaches (e.g., New Zealand 1994) included the local design parameters based 

on the curvature limit states of the column cross-section while others in practice today do not 

account for such a demand parameter.  The large variation in design parameters for 

determining the adequate amount of horizontal reinforcement are summarized in Tables 2-1 

through Table 2-3.  

Upon examination of the tables, it can be noted that there is a significant difference in 

complexity of equation and amount of parameters used in each approach.  Although this was 

the case, there was no general consensus as to what is the best approach to determining an 

adequate amount of horizontal reinforcement when dealing with lateral loading. 
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Table 2-1: Summary of variables used for determining spiral transverse confinement reinforcement 

  Variables 

Source Eqn. f'c fyt f'ce D′ Ag Acore ALR ρl fyl u/y lac 
LRFD Resistance 

Factor () 
Constant 

AKDOT, MODOT, 

NCDOT 
 See AASHTO Requirements 

SC DOT (2-8)        X   X   

AASHTO Bridge (‘12)-1 (2-17) X X            

AASHTO Bridge (’12)-2 (2-18) X X   X X        

AASHTO Seismic 
(2-15) 

(2-16) 
            X 

ACI 318-08 – 1 (2-9) X X            

ACI 318-08 – 2 (2-10) X X   X X        

ATC-32 (2-2)  X X    X X      

Caltrans 2003 

(Dia. 3 ft. or less) 
(2-5) X X   X X X       

Caltrans 2003 

(Dia. > 3 ft.) 
(2-6) X X     X       

New Zealand (1994) (2-1) X X   X X X X X X  X X 

Watson et al. (1994) (2-1) X X   X X X X X X  X X 

NZS 3101 (2008) - 1 (2-11) X X   X X X X X   X X 

NZS 3101 (2008) - 2 (2-12) X X   X X X X X   X X 

Note: X – indicates the use of term in specified equation 

  

6
4
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Table 2-2: Summary of variables used for volumetric equations based on specification of required area 

  Variables 

Source Eqn. f'c fyt f'ce D′ Ag Acore ALR ρl fyl u/y s 
LRFD Resistance 

Factor () 
Constant 

ACI 318-08 – 1 (2-24) X X   X X        

ACI 318-08 – 2 (2-25) X X            

AASHTO Bridge (‘12)-1 (2-36) X X            

AASHTO Bridge (’12)-2 (2-24) X X   X X        

AASHTO Seismic 
(2-15) 

(2-16) 
            X 

Priestley (1996) (2-21)  X X    X X      

ATC-32 (1996) &  

Caltrans (2003) 
 See Priestley (1996) 

NZS 3101 (2008) - 1 (2-28) X X   X X X X X   X X 

NZS 3101 (2008) - 2 (2-30) X X   X X X X X   X X 

Watson et al. (1994) (2-20) X X   X X X X X X  X X 

JSCE (JGC No. 15) (2-33)    X       X   

Note: X – indicates the use of term in specified equation 

Table 2-3: Summary of variables used in anti-buckling equations for determining s 

 
 Variables 

Source Eqn. fu fyt ρl Ast fy db d" 

NZS 3101 (2008)–1 (2-13)  X 
 

X X X X 

NZS 3101 (2008)–2 (2-14)  X  X X X X 

Priestley et al. (1996) and ATC-32 (1996) (2-3)   X     

Priestley et al. (1996) and ATC-32 (1996) (2-4) X 
   

X X 
 

    Note: X – indicates the use of term in specified equation

6
5
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The prior sections, as summarized in Table 2-1 through Table 2-3, indicate that the 

numerous methodologies specifying the required amount of transverse confinement 

reinforcement many different variables.  To better understand the differences in the 

equations, a direct look at the impact of the unconfined concrete compressive strength, 

column diameter, axial load ratio and longitudinal reinforcement ratio on the requirements 

was undertaken.  The comparisons were made using spiral or butt welded hoops for the 

transverse reinforcement in a circular column as the previous sections indicated that 

rectangular ties and hoops were about 70% as effective as the circular confinement. 

2.3.1 Concrete Compressive Strength 

The first set of analyses examined the impact of the unconfined concrete compressive 

strength on the requirement for horizontal confinement reinforcement ratio.  This was done 

by examining the equations summarized in Table 2-1 and Table 2-3 with duplicates removed.  

Upon closer inspection of the NZS 3101 (2008) equation, the data set was not included in this 

process as it was found to result in a negative value until the axial load ratio exceeded 

approximately 15% - 20%.  Axial load ratios higher than 15% were not examined within this 

portion as exterior bridge columns of multi-column bents are assumed to not exceed a 15% 

axial load ratio.  Furthermore, Park (1996) stated that this requirement shall not control over 

the anti-buckling requirements until about a 30% axial load ratio was attained.  Thus, the 

NZS 3101 (2008) equation for anti-buckling within the ductile plastic hinge region was 

included in the comparison as this would produce the most confinement reinforcement from 

the New Zealand Standard.  The SCDOT value was not provided in the comparison as this 
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was typical joint reinforcement requirements (Sritharan 2005), but was stated as a 

requirement to meet for the design of column confinement.   

For comparison purposes, a 4 ft diameter column with a longitudinal reinforcement ratio 

of 2% and an axial load ratio of 5% was selected based on expected usage within high 

seismic regions.  Additionally, it was assumed that both horizontal and longitudinal steel 

reinforcement would have a yield strength of 60 ksi.  The cover to the main longitudinal bar 

was selected to be 3 in. as this would be a conservative approach based on the AASHTO 

(2012) requirements for a bridge in a coastal region and would produce a higher ratio of 

gross concrete area to core concrete area.  The transverse confinement bar would be a #5 bar 

(dbh = 0.625 in., where dbh is the diameter of the horizontal reinforcement) when needed in a 

given confinement equation.  In the buckling equations specified by ATC-32 (1996) and NZS 

3101 (2008), the number and size of the longitudinal bars within the column cross-section 

was needed to compute the horizontal volumetric ratio.  In these equations, the bar size was 

specified as #8 bar (dbl = 1.0 in., where dbl = diameter of longitudinal bar), #11 bar (dbl = 1.41 

in., where dbl = diameter of longitudinal bar) or #14 bar (dbl = 2.25 in., where dbl = diameter 

of longitudinal bar) to capture a range of values that may be experienced with a 2% 

longitudinal reinforcement ratio within a 4 ft diameter bridge column.  Concrete compressive 

strength was varied in these equations from 4 ksi to 8 ksi as this range was typical when 

using normal strength concrete in a bridge column design.   

The results of the comparison are provided in Figure 2-1.  This figure demonstrates that 

when it comes to concrete compressive strength, a number of equations were not affected 

while others were highly influenced to the point where buckling equations might control the 
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design of the transverse reinforcement as was the case between 4 and 4.5 ksi depending on 

the size of the longitudinal bar.  The equations that remained constant throughout the 

variation in the concrete compressive strength were related to the prevention of buckling in 

the longitudinal bar.  These equations are independent of concrete compressive strength as 

they are based on the strength and quantity of longitudinal steel in the bridge column cross-

section.  Furthermore, the equations using #8 bar in the details required a higher level of 

confinement as the number of bars increased compared to the #11 bar and #14 bar detailing 

in order to maintain the 2% longitudinal reinforcement ratio.  The remaining equations within 

the comparison have a linear increasing trend from 4 ksi to 8 ksi as all the equations include a 

term for the ratio between the unconfined concrete compressive strength and the steel yield 

strength. This ratio constantly increases as the steel yield strength remains constant 

throughout the comparisons.   
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Figure 2-1: Impact of unconfined concrete compressive strength on horizontal 

confinement reinforcement ratio [Note: PH = within the plastic hinge 

region] 

Examination of the transverse confinement equations presented in Figure 2-1 indicate 

that the highest level of reinforcement requirements as a function of concrete compressive 

strength were specified within AASHTO (2012), ACI (2008), Caltrans (2003) and ATC-32 

(1996) when ignoring the impacts associated with premature buckling of the longitudinal 

reinforcement.  With this assumption in mind, the highest value of the required volumetric 

horizontal ratio comes from Eq. (2-9) and Eq. (2-17) in which the requirements were 
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specified to ensure an adequate flexural curvature capacity.  This particular equation is purely 

a function of the concrete and steel reinforcing material properties within the system but 

resulted in a reinforcement ratio between 0.8% and 1.6%.  The second highest term, ranging 

between 0.75% and 1.45%, was based on the minimum requirements specified within the 

Caltrans (2003), AASHTO (2012) and ACI (2008) documents that ensured the axial capacity 

of the core of the bridge column section without the cover concrete was the same as the gross 

concrete section.  The recommended equation provided by ATC-32, Eq. (2-2), produced the 

next highest amount of reinforcement as the concrete compressive strength increased from 4 

ksi to 8 ksi.  The resulting amount of confinement reinforcement varied from 0.75% to 

1.33%.  This methodology was within 20% of the two aforementioned equations and took 

into account the highest number of variables during definition of the required transverse 

reinforcement; thus, the additional variables within this equation were investigated to 

determine the associated impact on the amount of required confinement reinforcement.  The 

modified equations of Caltrans (2003) that take into account the importance of axial load 

ratio, Eq. (2-5) and Eq. (2-6), were approximately half the value of Eq. (2-9) and Eq. (2-10) 

which would have controlled the design of the cross-section. 

Although ignored originally, the anti-buckling equations would have controlled the 

amount of transverse confinement steel at low concrete compressive strengths for the column 

and reinforcement setup used for the comparison, see Figure 2-1, if a #8 bar was used for the 

longitudinal reinforcement.  However, if a #11 bar was used in the cross-section, the value 

could be exceeded by Eq. (2-9) by up to three times at a concrete compressive strength of 8 
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ksi.  Furthermore, once the concrete compressive strength exceeded 4.6 ksi, Eq. (2-9) and Eq. 

(2-17) would control the amount of confinement steel in the system.   

2.3.2 Axial Load Ratio 

The next parameter investigated within the transverse confinement reinforcement 

equations was the axial load ratio.  This parameter was selected for investigation as axial load 

influences the moment-curvature response of the section behavior; thus, the curvature 

ductility and associated displacement ductility would be similarly affected, which is a main 

component in the seismic design of reinforced concrete bridge columns.  Similar to the 

concrete compressive strength a comparison was made with a 4 ft diameter column with a 

2% longitudinal reinforcement ratio.  The cover, horizontal bar and steel properties were 

maintained the same as the previous comparison.  The main difference was that the design 

concrete strength would be 4 ksi as this is commonly specified in bridge design throughout 

the United States.  The results of the comparison are provided in Figure 2-2. 
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Figure 2-2: Impact of axial load ratio on horizontal confinement reinforcement ratio 

[Note: PH = within the plastic hinge region] 

Figure 2-2 provides a series of curves in which linearly increasing and constant trends 

were present within the requirements for horizontal confinement reinforcement.  The #8 bar 

buckling equations were investigated and resulted in higher requirements for the horizontal 

confinement reinforcement than any other equations; however, this diameter bar would result 

in the use of 36 bars for a 4 ft diameter cross-section and would not be practical in most 

designs.  The constant trends within the data set were from both the buckling equations and 

the requirements of AASHTO (2012) and ACI (2008).  The use of a larger diameter 

longitudinal reinforcing bar resulted in the buckling equations not controlling the design of 
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the concrete bridge column based on the applied axial load ratio.  The elimination of the 

buckling equations resulted in Eq. (2-9) and Eq. (2-10) requiring the most amount of 

transverse confinement reinforcement within the cross-section examined up to an axial load 

ratio between 5% and 10%.  Eq. (2-9), specified to ensure an adequate flexural curvature 

capacity in the cross-section, was consistently higher than Eq. (2-10) for the system 

examined as a function of axial load ratio.    The approach suggested by ATC-32 (1996) 

exceeded this value at an axial load ratio of 10%.  However, the equation designed to 

maintain axial load capacity, Eq. (2-10) was exceeded at an axial load ratio of 5%.  Since 

axial load ratios in excess of 10% are common in exterior columns of multi-column bents, 

the results of the analytical comparison demonstrate that the axial load ratio should be 

included into any future volumetric ratio equation. 

To account for the impact of axial load ratio, modifications to Eq. (2-9) and Eq. (2-10) 

were specified in Caltrans (2003) that include axial load ratio as a variable, Eq. (2-5) and Eq. 

(2-6).  Figure 3-2 indicates that these equations experienced a linearly increasing trend from -

5% to 15%.  However, the data resulting from these equations was generally one and a half 

to two times lower than the minimum requirements specified in AASHTO (2012) and ACI 

(2008) over the entire range examined.  Furthermore, these equations were lower than the 

buckling equations specified by ATC-32 (1996) and NZS 3101 (2008) up to approximately a 

5% ALR.  The NZS 3101 (2008) buckling equation utilizing a #11 bar longitudinally was 

higher than both of the Caltrans (2003) equations over the range examined within Figure 2-2.  

This reinforces the need to include multiple variables within any future proposed design 

equation for transverse confinement reinforcement.   
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2.3.3 Column Diameter and Ratio of Core to Gross Concrete Area 

The column diameter, and thus the ratio of the gross to core cross-sectional area, of the 

section was investigated next as this term defines a key geometric property in any design.  

The diameters chosen for investigation ranged from 12 in. to 96 in., which are common 

throughout bridge designs.  The concrete compressive strength was taken as 4 ksi, the steel 

yield strength was 60 ksi, a 5% axial load ratio was maintained and a longitudinal 

reinforcement ratio of 2% was selected as the average values for a concrete bridge column 

design.  The cover for the main steel was not changed and #11 and #14 bars were used in the 

buckling equations.  It was concluded that the #8 bar should no longer be provided in the 

comparison based on the probability of use in a 4 ft. diameter bridge column with a 2% 

longitudinal reinforcement ratio.   

Comparisons of results are provided in Figure 2-3, which shows evidence that the column 

diameter highly influences the amount of horizontal confinement reinforcement needed in a 

bridge column.  This was noted based on the opposite trends within the results that indicate a 

polynomial decrease in the Caltrans (2003) minimum equation, Eq. (2-10), and a polynomial 

increase provided by the equations for anti-buckling, Eq. (2-3) and Eq. (2-14).  The 

decreasing polynomial trend in the Caltrans (2003) minimum equation, Eq. (2-10), would 

control the design up to a column diameter of approximately 44 in. based on the need to 

ensure axial capacity without the presence of the cover concrete.  At this point, a constant 

trend in the results based on the specification of transverse confinement such that an adequate 

flexural curvature capacity is attained, Eq. (2-9), controls until a 62 in. to 72 in. diameter 

column is reached.  At this point, the anti-buckling equations, Eq. (2-3) and Eq. (2-14), 
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control for the remainder of the diameters examined within this comparison.  The exact 

controlling equation, however, depended on the diameter of the longitudinal bar being 

examined as it may not be practical to use #11 bars in a 96 in. diameter cross-section.  The 

opposite trends in the results were somewhat expected as the decreasing polynomial trend 

contains a term based on the ratio between the gross-area of concrete and the core area of 

concrete in the bridge column.  The increasing polynomial trend occurred as the anti-

buckling equations rely on the number of bars present within the cross-section of a bridge 

column and must increase with column diameter to maintain the specified 2% longitudinal 

reinforcement ratio for the comparison. 

Differences in requirements between a 24 in. diameter column and 72 in. diameter 

column were approximately a factor of 2 with the Caltrans (2003) minimum equation, Eq. 

(2-10), for the transverse confinement controlling the design at column diameters less than 48 

in.  This particular equation was expected to control the design within this range as many 

resources including Caltrans (2003) and Priestley et al. (1996) stated that this equation was 

for a bridge column with a diameter of less than 3 ft.  The buckling equations used in Figure 

2-3 may not always control the design for bridge columns in excess of 60 in. as an increased 

longitudinal bar diameter would result in a lower amount of required horizontal confinement 

reinforcement.  Additionally, the equations presented in Caltrans (2003) that accounted for 

the influence of axial load ratio were once again two times lower than the controlling 

equations.  The controlling equation in Figure 2-3 indicates that the ratio of the gross section 

area to the core section area is important in the overall design as noted by the polynomial 

behavior.  Since the area of the core and overall section take into account the column 
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diameter, this means that a future developed design equation should take into account the 

column diameter or the ratio of the gross section to the core section. 

 

Figure 2-3: Impact of column diameter on the horizontal confinement reinforcement 

ratio [Note: PH = within the plastic hinge region] 

2.3.4 Longitudinal Reinforcement 

The final comparison made to examine the impact of variables on the design of horizontal 

confinement reinforcement was for the amount of longitudinal reinforcement in the bridge 

column.  To make this comparison, a number of assumptions were made about the average 

concrete column design throughout California and the United States.  This meant that a 4 ft. 

diameter column with a concrete compressive strength of 4 ksi and axial load ratio of 5% was 
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again selected.  Additionally, the steel had a yield strength of 60 ksi and the reinforcing bar 

was a #11 or #14 bar when the bar diameter was used as a variable in quantifying the 

transverse reinforcement.  To make the comparison, the longitudinal reinforcement ratio was 

varied between 1% and 4% as these are typically the upper and lower limits that are used in a 

bridge column design.   

The results of the comparison are shown in Figure 2-4, which contains both linear and 

constant trends as the longitudinal reinforcement ratio increases from 1% to 4%.  The 

increasing trends in Figure 2-4 were from the anti-buckling and ATC-32 (1996) equations as 

these equations included terms that account for the amount of steel within the bridge column 

cross-section.  The constant trends within the comparison were based on the minimum 

equations presented in AASHTO (2012) and ACI (2008), which do not contain a term related 

to the amount of longitudinal reinforcement.  These particular equations are a function of 

material and geometric properties of the bridge column design.   

The ATC-32 (1996) equation for confinement exceeded the requirements of AASHTO 

(2012) between a longitudinal reinforcement ratio of 2% and 2.5%.  The minimum 

requirement specified by AASHTO (2012) and Caltrans (2003) was exceeded at 

approximately a 2% reinforcement ratio while the additional equation based on flexural 

curvature was exceeded at a 2.5% longitudinal reinforcement ratio.  Once again, the 

equations presented in Caltrans (2003) based on the adjustment for axial load ratios were 

exceeded by a factor of two at a minimum.  Furthermore, the buckling equations exceeded 

the requirements of AASHTO (2012) and ACI (2008) at the high end of the longitudinal 

reinforcement comparison when using a #11 bar within the bridge column.  Additionally, the 
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NZS 3101 (2008) buckling equation exceeded the required amount of confinement 

reinforcement using a #14 bar longitudinally.  The ATC-32 (1996) equation was exceeded at 

approximately a 3.4% longitudinal reinforcement ratio by the NZS 3101 (2008) buckling 

equation using a #11 bar in the cross-section.  However, it should be noted that a 3.4% 

longitudinal reinforcement ratio would contain 40 bars within a 4 ft. diameter cross-section 

and would not be realistic for a design. 

 

Figure 2-4: Impact of the amount of longitudinal reinforcement on the horizontal 

confinement reinforcement ratio [Note: PH = within the plastic hinge 

region] 
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2.4 Soil – Foundation – Structure – Interaction (SFSI) 

The complexity of designing reinforced concrete bridges in seismic situations is furthered 

based on the presence of the foundation supporting the entire superstructure.  This is the case 

as any additional flexibility must be sufficiently accounted for in the design to make sure 

demand does not exceed capacity (AASHTO 2010).  Flexibility in the foundation region can 

come from the detailing of the connection to the response of the soil surrounding the overall 

foundation.  In high seismic regions, columns continuously supported on drilled shaft 

foundations are commonly employed due to reduced construction costs, simplicity of 

construction and elimination of column-foundation connection.  This type of system, 

however, is highly influenced by the interaction between the soil and foundation shaft and 

must be accounted for to ensure sufficient capacity.   

Over the years, researchers have been constantly improving the methods of accounting 

for soil-foundation-structure-interaction (SFSI) through experimental and 

analytical studies,  

 

 

 

Table 2-4.  The goal of each study normally falls within two categories—improvement or 

simplification of the soil spring concept (Hetenyi 1946) used in practice, depicted graphically 

in Figure 2-5.  This methodology relies on ensuring equilibrium between the foundation shaft 

and soil including the full nonlinearity of the material properties, the applied boundary 

conditions and the desired loading, Figure 2-6 and Eq. (2-37). 
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Table 2-4: Studies on lateral loading of drilled shafts 

Researcher Year Type of Study Study Overview 

Reese and 
Welch 

1975 Experimental 
Development of soil subgrade reaction-displacement 
curves (p-y curves) in clay soils for use in the Winkler 

soil spring concept 

Crowther 1990 Experimental 
Modification of curves by Reese and Welch for use in 

frozen clay soils 

Priestley et al. 1996 Analytical 
Determination of inelastic rotation and ductility of a 

column/foundation shaft in cohesionless soils 

Budek et al. 2000 Analytical 

Parametric study on the inelastic seismic response of 
reinforced concrete bridge column/pile shafts in non-

cohesive soils to simplify Winkler model. Verified 
against experimental and in-situ testing.   

Chai 2002 Analytical 
Analytical model for the flexural strength and ductility 
of drilled shafts subjected to lateral loads in cohesive 

and non-cohesive soils 

Chai and 
Hutchinson 

2002 Experimental 
Experimental testing on full scale drilled shafts in 

cohesionless soils. Used to verify the analytical model 
proposed by Chai (2002) 

Suleiman et 
al. 

2006 Experimental 

Experimental testing on full scale integrated 
column/foundation systems in cohesive soil to 

examine the effects of seasonal freezing on the lateral 
response. 

Suarez and 
Kowalsky 

2007 Analytical 

Parametric study on cohesive and non-cohesive soils 
for the displacement-based seismic design of drilled 
shafts.  Verified against experimentation by Chai and 

Hutchinson (2002) 

Sritharan et 
al. 

2007 Analytical 
Parametric study to examine the effects of seasonal 

freezing in clay soils. 
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Figure 2-5: Winkler foundation model 

 

Figure 2-6: Beam-column element used in differential equation derivation 

  
   

   
    

   

   
                Eq. (2-37) 

where, EI = flexural stiffness of foundation;  

y = lateral deflection of beam-column element and soil;  

x = length along foundation;  

P = axial load on column/foundation shaft 

Es = soil modulus; and  

p = soil subgrade reaction. 
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A recent study performed by the research team at Iowa State University (Shelman et al. 

2010) concluded that although a number of models were currently in existence for the 

simplification of accounting for SFSI a number of shortcomings still existed in the design of 

columns continuously supported on drilled shaft foundations in cohesive soils.  These 

shortcomings consisted of: 

 plastic action within the inelastic range of the system was generally underestimated as 

the analytical plastic hinge length in some models was based on experimentation in 

cohesionless soils; 

 although recommended for use in cohesive soils, most of the current models were 

only verified against experimental testing performed in cohesionless soils as the 

engineering properties are easier to control; 

 none of the current models considered the effects of seasonal temperature variation on 

material properties during their development; 

 the maximum moment location was generally found to not coincide with that of a 

detailed analysis in cohesive soils; and 

 localized effects (e.g., curvature and translation) at the point of the maximum moment 

were not accurately captured in most of the models although this is where the most 

damage will occur in an integrated column/foundation system subjected to design 

level or greater seismic events. 

Identification of these shortcomings led to the development of a new equation based 

simplified model as presented in Appendix A.  This model was developed as a cantilever 

supported on a flexible base at the point of maximum moment, Figure 2-7.  The overall 
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height of the system was dictated at the maximum moment location as this would be a critical 

location in seismic design to ensure that enough transverse confinement reinforcement would 

be provided to attain the desired performance location.  The flexible base consists of two 

springs, one rotational and one translational, to capture the movement of the shaft occurring 

below this point.  The third spring in the model was included half-way between the ground 

surface and maximum moment location to account for the resistance of the soil within this 

region.  The use of springs in this manner improved the versatility of the approach with 

computer simulations. 

 

Figure 2-7: Proposed simplified model for SFSI in cohesive soils (reproduced from 

Shelman and Sritharan 2013) 
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As with any proposed model, verification needed to be performed to ensure adequacy 

within the local and global response of the system.  These verifications were performed 

against computer simulations as well as experimental testing of Suleiman et al. (2006) and 

Stewart et al. (2007).  In all instances, the model was found to sufficiently capture the lateral 

load response of the system.  A sample of the global verification to the experimental testing 

of Suleiman et al. (2006) is provided in Figure 2-8.  This verification was provided herein to 

demonstrate the ability of the model to account for seasonal temperature variation and the 

large range of undrained shear strength that can be used with the model.  The figure provides 

additional evidence as to the need for accounting for the fluctuations in temperature as noted 

by the change in lateral force and displacement at the first yielding and ultimate limit states 

used by the proposed method. 

  
 

Figure 2-8: Graphical comparison of proposed simplified model with experimental 

testing of Suleiman et al. (2006) 
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2.5 Impact of Seasonal Freezing 

Some of the largest earthquakes recorded in the history of the United States and the world 

have taken place during times of seasonal freezing.  Examples include the New Madrid 

earthquake sequence of 1811-1812, the Great Alaska earthquake of 1964 (ML = 9.2), the 

Nisqually earthquake of 2001 (ML = 6.9) in Washington, and several large magnitude 

Hokkaido earthquakes in Japan.  Although the occurrence of major future earthquakes cannot 

be predicted, seasonal temperature variations across the United States are well known.  In 

areas expected to seasonally freeze, the following temperature variations are expected:  

 Alaska: from -40 °C to 20 °C (variation of 110 °F),  

 Midwest: from -20 °C to 20 °C (variation of ~75 °F),  

 Eastern seismic region: from -20 °C to 20 °C (variation of ~75 °F), and 

 Western seismic region: from -20 °C to 15 °C (variation of ~60 °F).   

Despite these drastic temperature changes, they are not accounted for in routine design 

although SFSI and to a certain extent structural behavior will be greatly influenced.  

Understanding the influences of cold temperatures on the response of SFSI systems are 

critical within the field of seismic engineering to prevent undesirable failure modes in 

accordance with the capacity design philosophy. 

2.5.1 Effects of Seasonal Freezing 

In order to understand the effects of seasonal freezing on deep bridge pier foundations, 

Sritharan et al. (2007) undertook an exploratory research program into the lateral response of 

integrated bridge column/foundation systems with a CIDH shaft subjected to seasonal 
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freezing.  The exploratory research program consisted of analytical and experimental 

components.  Following completion of the experimental investigation (Suleiman et al., 

2006), analytical studies were performed by Sritharan et al. (2007) and Wotherspoon et al. 

(2010 a&b) 

Based on the experimental data, a number of conclusions were drawn on the effects of 

seasonal freezing to the lateral loading of integrated column/foundation systems.  The 

following conclusions were reported in Suleiman et al. (2006): 

1. As expected, the continuous shaft increased the flexibility of the system due to the 

maximum moment forming below the ground surface. 

2. With respect to the warm weather conditions, the cold weather system experienced 

the following changes in the lateral load response: 

 increased effective elastic stiffness by 170%, 

 increased lateral load resistance by 44%, 

 upward shift of the maximum moment location by 0.84 m (~33 in.), 

 reduced plastic region length by 64% in the foundation shaft, and 

 reduced the gap opening at the base of the column by 60%. 

3. Seasonal wintry conditions must be accounted for in the seismic design of continuous 

column to drilled shaft foundations because of the drastic changes seen in the lateral 

response of these systems. 

The analytical investigation undertaken by Sritharan et al. (2007) examined the 

generalized effects of freezing temperatures and associated design implications on integrated 
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column/foundation systems.  LPILE (2004), which uses the finite difference method and the 

Winkler soil spring concept, was used to complete the analytical portion.  The soil spring 

properties were constructed based on the work of Reese and Welch (1975) with 

modifications based on the work of Crowther (1990).  In regions not defined using “user-

specified” curves, the soil springs were constructed by specifying the undrained shear 

strength, strain at fifty percent soil-strength, unit weight and a soil subgrade modulus for the 

predefined models available in LPILE (2004).  The concrete properties were adjusted based 

on the work of Lee et al. (1988); while, the steel properties were adjusted based on the work 

of Filiatrault and Holleran (2001). 

Using the above modifications, the analyses were run and compared to the experimental 

results as appropriate.  These comparisons concluded that the modeling would accurately 

capture the effects of seasonally frozen conditions, allowing the remaining analyses at 

different temperatures to be legitimized.  A number of conclusions were drawn from this 

study, which are as follows: 

1. A 2-D model that uses beam-column elements to represent the column and foundation 

shafts and compression only springs satisfactorily captured the measured response of 

the column/foundation system in warm and freezing conditions.  This correlates well 

with the design recommendations presented in AASHTO (2010 and 20012) in which 

a method involving soil springs is the primary recommendation. 

2. With respect to warm weather conditions, the response of a column to drilled shaft 

system at -1 °C (30.2 °F) to -20 °C (-4 °F) will change the lateral response as follows: 

 increase the effective lateral stiffness by 40% - 188%, 
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 reduce the lateral displacement capacity by 17% - 63%, 

 increase the lateral load resistance and shear demand in the column by 25% - 

30%, 

 increase the shear demand in the foundation shaft by 25% - 80%, 

 shift the maximum moment location upwards by 0.54 m - 0.82 m, and 

 reduce the length of plastic action in the foundation shaft by 19% - 68%. 

3. The change in soil stiffness plays a more significant role in dictating the lateral 

response of column/foundations systems than the change in concrete and steel 

properties. 

4. The depth of frozen soil and axial load do not greatly alter the response of the system 

in the frozen state (see Figure 2-9). 

 
Figure 2-9: Frost depth, maximum moment location and plastic hinge length at ultimate 

condition for column-foundation shafts (Sritharan et al., 2007) 

5. Seasonal freezing will significantly alter the seismic response of integrated bridge 

column-foundations systems.  Therefore, unless these effects are accounted for in 
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design, they will have serious implications in areas where seasonal freezing occurs 

around the world (see Figure 2-10). 

 
Figure 2-10: Global force-displacement response as temperatures decrease for a 

column-foundation shaft system (Sritharan et al., 2007) 

In addition to the monotonic analytical modeling performed by Sritharan et al. (2007), 

analytical investigations were conducted by Wotherspoon et al. (2010 a&b) to construct a full 

cyclic model of the lateral force-displacement response of the two systems examined by 

Suleiman et al. (2006).  The research was conducted using Ruaumoko (Carr 2005) and the 

Winkler soil spring concept including the presence of gap opening and reattchment.  The 

structural behavior of the reinforced concrete column and foundation shafts were modeled 

using experimental material properties through the use of moment-curvature responses 

constructed using a fiber based approach available in OpenSees.  Cyclic loading was applied 

to the top of the column based on the experimental testing by applying increasing target 

displacements with no less than three cycles at each target displacement. 
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Wotherspoon et al. (2010a) concluded that through the use of elements available in 

Ruaumoko, the full-scale cyclic response of a column/foundation shaft could successfully 

capture both summer and winter conditions for local and global behavior.  This was 

accomplished by modeling structural nonlinearity, gap development and soil nonlinearity in 

compression.  Global force-displacement comparisons used in the model validation are 

provided herein as Figure 2-11 and Figure 2-12.  The modeling in Ruaumoko further 

validated the findings of Sritharan et al. (2007) in which the range of temperatures 

experienced by the system must be included in the design process to ensure adequate 

response during a seismic event. 

  

Figure 2-11: Comparison of the force-displacement characteristics at the column top 

for the monotonic and cyclic Ruaumoko models (a) warm testing; (b) cold 

testing 
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Figure 2-12: Cyclic force-displacement responses for (a) SS1 column top; (b) SS2 

column top; (c) warm testing column base; (d) cold testing column base. 

2.6 Broad Impacts  

To better understand the broad impacts of seasonal freezing, an investigation was 

undertaken to examine the potential of seismic events and seasonal freezing to occur 

simultaneously within the United States and Japan (Sritharan and Shelman, 2008).  In the 

United States, one commonly assumes that a significant freezing condition would only occur 

within the Central and Eastern United States and Alaska, but this is not an accurate 

assumption.  In fact, a depth as small as 10 cm (4 in.) can alter the lateral loading response of 
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integrated bridge column/foundation systems according to Sritharan et al. (2007).  

DeGaetano and Wilks (2001) suggested a depth of this nature can be expected in the seismic 

region of the western United States including the northeastern part of California (see Figure 

2-13).  In Japan, the northern portion of Honshu Island and the Island of Hokkaido should 

experience seasonal freezing and high seismic activity as well (see Figure 2-14).   

 

Figure 2-13: Frozen soil depth contours produced for a two-year return period by 

DeGaetano and Wilks (2001) 
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Figure 2-14: Average winter temperatures for Japan’s larger cities (Japanese 

Meteorological Agency, 2009) 

To better understand the significance of soil freezing and the seismic response of bridges, 

an impact study was performed for the United States and Japan.  For the United States, the 

number of bridges within each state was determined and then compared to the frost depth 

contour map in Figure 2-13 and a seismic hazard map.  Due to a lack of information, it was 

assumed that the number of bridges in a state were uniformly distributed, Figure 2-15.  The 

chosen seismic map for this study was the 0.2-second spectral acceleration map with a 10% 

probability of exceedance in 50 years as published by the United States Geological Survey 

(2002).  With a limiting criterion that the bridges should experience at least 0.2g spectral 

acceleration at a period of 0.2-second, 66,000 bridges were estimated to be in seismic 

regions.  Overlaying frost contours with the seismic hazard map, as shown in Figure 2-16, 

found that the number of bridges that may experience both a minimum of 10 cm (~ 4 in.) of 
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frost depth and 0.2g spectral acceleration was approximately 50% of those in seismic 

regions.  When only the minimum frost depth condition was used (i.e., the bridge site should 

experience a frost depth greater than or equal to10 cm [~ 4 in.]), over 400,000 bridges or 

two-thirds of all bridges in the U.S. were found to be affected by seasonally frozen 

conditions, yet this issue is seldom addressed in routine design methods.  

 

Figure 2-15: Statewide distribution of bridges in the United States (Bureau of 

Transportation Statistics, 2007) 

Alaska – 1,289 
Hawaii – 1,105 

 

Total Bridges as of August 2007:  597,876 
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Figure 2-16: USGS seismic hazard map (2002) overlaid with frost depth contours shown 

in Figure 2-13 

The broad impact study of Japan consisted of examining the average winter temperatures 

and comparing the locations of possible frozen soils to seismic hazards and population 

distribution.  Figure 2-14 demonstrated the locations for possible frozen soils were Hokkaido 

Island and the northern part of Honshu Island.  Within this region, seismic hazards were 

found, using the National Earthquake Information Center’s historical and present data, and 

compared with the frozen soils area.  With this information, the population distribution was 

examined to provide a qualitative risk estimate, as bridge locations were unavailable.  It was 

noted that some major cities were located within this region, such as Sapporo.  A final map 

correlating with Figure 2-14 was produced that shows the population distribution and seismic 

events in the area in Figure 2-17. It appears that bridges in four major cities and the south-

eastern part of the island may be affected by both earthquakes and seasonally frozen 

Notes: 

1.  Hawaii omitted because of no frost concerns.   

2.  Entire State of Alaska would experience greater than 10cm     

        frost depth 
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conditions.  This area was verified as a high seismic region in the recent 2011 Tohoku 

earthquake as this event corresponded well to this predicted region. 

 

Figure 2-17: Seismic activity of Japan near Hokkaido Island circa year 2000 

2.7 Material Behavior 

When examining the lateral response of columns supported on CIDH shafts, the material 

behavior must be defined for concrete, soil and steel.  These definitions are even more 

critical during times of seasonal freezing in which material properties are markedly different 

from warm weather conditions.  The section below provides information on the studies 

performed in freezing conditions for soil and concrete.  These studies are critical to 

Key: 

1. Small black circles are magnitude 5.5 or greater earthquakes 

2. Open circles are population centers of 35,000 to 1.8 million persons 
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understand the local response of a confined concrete member so the moment-curvature 

response is correctly captured.  Steel will not be presented in this work as a recent study at 

Iowa State University by Levings and Sritharan (2012) conducted similar work and will not 

be discussed further within this dissertation. 

2.7.1 Concrete 

Sritharan et al. (2007) demonstrated in an exploratory research program that concrete 

material properties will change as temperature decreases.  Although they state that these 

changes in the material properties do not cause as significant an impact as the change in soil 

properties, they must be accounted for to correctly handle the effects of seasonal freezing in 

design.  Currently, a limited amount of research is present to show the influence of cold 

temperatures, as warm weather conditions are generally used for the design process.  The 

following section will discuss prior research that has been completed on the effects of cold 

temperatures to concrete material properties.   

Sehnal et al. (1983) 

Prior research in material testing of concrete has shown that as temperature decreases the 

compressive strength, elastic modulus and bond strength of concrete increases.  Sehnal et al. 

(1983) demonstrated that as temperature decreased, concrete compressive strength increased 

according to a polynomial curve in normal strength concrete.  The curve produced by this 

study, reproduced in Figure 2-18, showed that between 20 °C (68 °F) and -25 °C (-13 °F) an 

increase of 25% in compressive strength could be expected.  Although experimentation was 

performed on 41.4 MPa (6 ksi) concrete, it was assumed that this was applicable over 

varying strengths as the testing was performed on plain Type II Portland cement concrete for 
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a w/c ratio of 0.6 which is high for typical bridge designs throughout Alaska and the United 

States. They also provided evidence, based on statistical modeling, that the rate at which 

concrete test specimens were cooled to testing temperature was independent of the 

compressive strength (1983).   

 

Figure 2-18: Percentage increase of concrete strength with reduction in temperature 

(after Sehnal et al., 1983) 

Lee et al. (1988) 

The information provided by Sehnal et al. (1983) was furthered in 1988 by Lee et al. 

(1988a).  This research demonstrated the compressive strength increased in a polynomial 

manner as suggested by Sehnal et al. (1983).  Lee et al. (1988a) further concluded the 

modulus of elasticity and bond strength would increase at lower temperatures.  These 

researchers noted that the increase in modulus of elasticity occurred at a slower rate than the 

rate of increase of concrete compressive strength (e.g., at -70 °C [-94 °F] the compressive 
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strength increased by 151.3% compared with the elastic modulus increase of 114.7%).  This 

rate of decrease is as expected, as most codes suggest Ec is a function of the square root of 

the unconfined compressive strength.  The bond strength in confined concrete was also noted 

to increase with lower temperatures, since bond strength is correlated with the unconfined 

compressive strength of concrete.  In the study it was found that at -70 °C [-94 °F] the bond 

strength would increase by 145.1% compared with the 128.6% increase of the concrete 

compressive strength.  The data also demonstrate a non-uniform increase of bond strength 

was experienced as temperature decreased from ambient room temperature. 

In a follow-up paper published by Lee et al. (1988b), the effects of high strength concrete 

at low temperatures provided conclusions in terms of compressive strength, modulus of 

elasticity and bond strength. The main conclusions drawn were that the respective properties 

increased at a similar rate to that of normal strength concrete; however, the percent of 

increase tended to be lower than those of normal strength concrete at similar temperatures.  

This difference may be due to the variation in water to cement ratio between the normal 

strength, w/c = 0.48, and high strength, w/c = 0.35, tests; however, the authors do not provide 

any reasons for the differences experienced between the two types of concrete. 

In the two papers published by Lee et al. in 1988 (a & b), the researchers expanded the 

information available on Poisson’s ratio.  They reported that the past studies conclude 

Poisson’s ratio should be taken to be approximately 0.20 regardless of compressive strength 

and that Poisson’s ratio will decrease as the compressive strength of the concrete increases.  

This suggests that no matter the temperature of concrete a constant value of 0.20 should be 

used for Poisson’s ratio in concrete.  However, Lee et al. (1988a, 1988b) has shown in both 
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normal strength concrete and high strength concrete that as temperature decreases and 

unconfined compressive strength increases, the Poisson’s ratio will increase.  The researchers 

provide data that suggest that at a temperature as low as -70 °C [-94 °F], Poisson’s ratio will 

increase by approximately 50% in normal strength concrete and 25% in high strength 

concrete with interpolation required to attain increases at other subzero temperatures. 

2.7.2 Soil 

Frozen soil can be both an advantage and disadvantage when designing or constructing a 

structure in civil engineering projects.  This is the case, as the inherent impervious nature of 

ice within the frozen soil construct allows for weak and soft soils to be bridged temporarily 

for stabilizing slips, underpinning structures, sampling weak or non-cohesive soils, 

temporary roads, protecting sensitive equipment and many other advantages (Harris 1995).  

All of these benefits rely on the stiffening of soil which is a concern for the seismic design of 

columns supported on drilled shafts as previously shown.  Thus, the mechanical properties of 

the soil must be adequately established. 

To define engineering properties correctly, the effects of moisture content and ice on the 

unconfined compressive strength of concrete must be understood.  According to Tsytovich 

(1975), the range in which water experiences a significant phase transformation, the factors 

determining the strength of frozen soils, both seasonally and permanently, are the overall 

amounts of ice and unfrozen water and how they vary with temperature.  The range discussed 

in Tystovich (1975) was suggested as 0 °C to -0.5 °C (32 °F to 31.1 °F) for sandy soils and 0 

°C to -5 °C (32 °F to 23 °F) for clayey soils.  The variation of unfrozen water content with 

temperature for different soils was examined during a project undertaken by Williams 
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(1988).  The data attained during this investigation, Figure 2-19, demonstrate that between 0 

°C to -5 °C (32 °F to 23 °F) the amount of unfrozen water in a soil specimen will change 

rapidly as the water undergoes a phase change from a liquid to a solid.  In addition, the 

information provided suggests the rate of change in the unfrozen water content is a function 

of the soil type which is most likely due to the variation in the molecular structures. 

After understanding the formation of ice in soil, the next step is to examine how the 

overall freezing of the soil affects engineering properties (e.g., compressive strength and 

modulus of elasticity).  In 1978, Andersland and Anderson provided a summary of the work 

conducted by Sayles (1966 and 1968) on the effects of temperature on the unconfined 

compressive strength of soils.  This summary was provided graphically and is provided here 

as Figure 2-20.  Figure 2-20 shows that as temperature decreases from 0 °C (32 °F) to 

approximately -150 °C (-238 °F) an overall increase in the unconfined compressive strength 

of the soil occurs.  In addition to the soil curves, three curves representing the increase in 

compressive strength of ice were provided to demonstrate the hardening that takes place with 

temperature.  The combination of soil and ice curves demonstrates the influence of ice 

forming within the pores of the soil contributes to the overall unconfined compressive 

strength gain.  However, the figure also provides evidence suggesting that as temperatures 

decreases, the influence of ice reduces and the contact between the microscopic particles has 

a direct impact on the unconfined compressive strength of soil.   
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Figure 2-19: Typical curves of unfrozen water content against temperature (after 

Williams, 1988) [Harris, 1995] 

 

Figure 2-20: Temperature dependence of unconfined compressive strength for several 

frozen soils and ice (after Sayles, 1966) [Andersland and Anderson, 1978] 
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Besides the work performed by Sayles (1966), Tsytovich (1975) provided a table, Table 

2-5, on past investigations that noted the increase in ultimate compression strength of soil 

when subjected to freezing temperatures. Additional information was provided by Tsytovich 

(1975) on the temperature effects on the strength of permafrost, but the data sets have not 

been included due to the focus of the report being on seasonally frozen ground. 

Table 2-5: Ultimate strength of frozen soils in uniaxial compression (after Tsytovich, 

1975) 

Designation of 
Soil 

Total Moisture Temperature Strength 
Investigator 

Wd, % °C (°F) ul,  MPa (tsf) 

Quartz sand 
(100% content of 

1 – 0.05 mm 
fraction 

14.7 -1.8 (28.8) 6.08 (63.5) 

N. A. Tystovich (1930) 

14.3 -3.0 (26.6) 7.65 (79.9) 

14.0 -6.0 (21.2) 9.71 (101.4) 

14.1 -9.0 (15.8) 11.57 (120.8) 

14.9 -12.0 (10.4) 13.14 (137.2) 

14.3 -20.0 (-4) 14.91(155.7) 

Silty sandy loam 
(61.2% of 0.05 – 

0.005 mm 
fraction; 3.2% < 

0.005 mm) 

21.6 -0.5 (31.1) 0.88 (9.2) 

N. A. Tystovich (1940) 
23.1 -1.8 (28.8) 3.53 (36.9) 

22.1 -5.1 (22.8) 7.65 (79.9) 

21.3 -10.3 (13.5) 12.55 (131.1) 

Clay (50% content 
of < 0.005 mm 

fraction) 

34.6 -0.5 (31.1) 0.88 (9.2) 

N.A. Tystovich (1940) 
36.3 -1.6 (29.1) 1.27 (13.3) 

35.0 -3.4 (25.9) 2.26 (23.6) 

35.3 -8.2 (17.2) 4.41 (46.1) 

Quartz sand 
(100% content of 

1 – 0.05 mm 
fraction 

16.7 -20.0 (-4) 14.71 (153.6) 
N. K. Pekarskaya 

(1966) 

Cover Clay (44.3 
content of < 
0.005 mm 
fraction) 

32.0 -20.0 (-4) 8.92 (93.2) 
N. K. Pekarskaya 

(1966) 

 

Tsytovich (1975) furthered the information on frozen soils through an examination of the 

tensile strength of soil, both instantaneously and long term.  This data set, Table 2-6, suggests 
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that as temperature decreases the tensile strengths of soil will increase.  Therefore, when a 

system is subjected to a lateral load during a time of seasonal freezing, larger tensile cracks 

will form, decreasing the soil confinement on the foundation shaft. 

Table 2-6: Instantaneous and ultimate long-term tensile strengths of frozen soils (after 

Tsytovich, 1975) 

Designation of Soil 
Total 

Moisture 
Temperature 

Strength, 

inst   
Strength, lt   Investigator 

Wd, % °C (°F) MPa (tsf) MPa (tsf) 

Clay (45% content 
of fraction < 0.005 

mm) 

19.4 -1.2 (29.8) 0.96 (10.0) -- 
N. A. Tsytovich 

(1952) 
19.4 -2.5 (27.5) 1.65 (17.2) -- 

19.4 -4.0 (24.8) 2.12 (22.1) -- 

Cover Clay 

32.0 -2.0 (28.4) 1.13 (11.8) -- 
N. K. Pekarskaya 

(1966) 
32.0 -5.0 (23.0) 1.35 (14.1) -- 

32.0 -10.0 (14.0) 2.60 (27.1) -- 

Heavy loam (22.5% 
content of fraction 

< 0.005 mm) 
31.8 -3.0 (26.6) 1.18 (12.3) 0.25 (2.7) 

S.E. 
Grechishchlev 

(1963) 

Heavy sandy loam 34.0 -4.0 (24.8) 1.67 (17.4) 0.20 (2.0) 
N. A. Tsytovich 

(1952) 

Quartz Sand 

17.0 -2.2 (28.0) 0.62 (6.5) -- 
N. K. Pekarskaya 

(1966) 
17.0 -5.0 (23.0) 0.77 (8.1) -- 

17.0 -10.0 (14.0) 1.57 (16.4) -- 
  

In addition to the temperature being a significant contributor to the ultimate compressive 

strength of the soil, the total moisture content of the soil will influence the strength.  

Tsytovich (1975) found that as the moisture content increases the ultimate compressive 

strength of the soil will increase until just short of complete water saturation and decrease 

thereafter, similar to unfrozen soil.  Tsytovich’s figure is provided within this report as 

Figure 2-21. 

Harris (1995) further expanded on the strength of frozen soil by providing information on 

the work of Zhu and Carbee (1984) performed on frozen silt (Plasticity Index, Ip = 4).  The 
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work concluded that as the strain rate applied to the specimens increased the strength of the 

soil increased, as shown in Figure 2-22.  Additionally, Figure 2-22 shows the failure mode of 

the silt switched from a ductile failure at slower rates of loading to a more brittle failure at 

the higher rates of loading.  A closer examination of the data provided evidence to suggest 

that the sharp bend in the stress-strain curves at less than 1% strain is most likely due to the 

cracking of the ice matrix. 

The elastic modulus of soil is a major component when determining the deformation of 

the soil, as this property dictates the initial portion of a p-y curve.  Tsytovich (1975) 

examined the effects of negative temperatures on the modulus of elasticity of soil.  This 

investigation found that as temperature decreased the elastic modulus would increase as 

expected, since the soil modulus of elasticity is proportional to soil strength.  Tsytovich 

found that the modulus could be predicted by a power series or a third order polynomial 

function, as depicted by the data shown in Figure 2-23.  However, if the temperature of the 

specimen is not within the phase changing range of water a linear approximation can be used 

with coefficients determined using experimental means.  It was also noted that the applied 

external pressure will influence the coefficients used to determine modulus of elasticity 

through the suggested relationships. 
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Figure 2-21: Ultimate compressive strength of frozen soils as a function of their total 

moisture content: (1) sand; (2) sandy loams; (3) clay (51% content of 0.005 

mm fractions); (4) silty clay (63% content of fraction < 0.005 mm). 

[Tsytovich, 1975] 

Another deformation component examined by Tsytovich (1975) was Poisson’s 

coefficient to examine the effects of temperature on the lateral elastic deformation of soil.  

This examination was performed using direct measurements of experimental test specimens.  

Data retrieved from this testing, Table 2-7, show that as temperature decreases Poissson’s 

ratio will substantially reduce.  In addition, the data demonstrate that as the temperature 

approaches 0 °C (32 °F) the coefficient approached 0.5, similar to an ideal plastic body at 

lower temperatures. 
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Figure 2-22: Stress-strain curves for uniaxial compression of a remoulded silt (after 

Zhu and Carbee, 1984) [Harris, 1995] 
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Figure 2-23: Modulus of normal elasticity E, kg/cm
2
, of frozen ground at constant 

pressure  = 2 kg/cm
2
. (1) Frozen sand; (2) frozen silty soil; (3) frozen clay. 

(Tsytovich, 1975) 

Table 2-7: Values of Poisson’s coefficient for frozen soils (after Tsytovich, 1975) 

Designation of 
Soil 

Total Moisture Temperature Axial Stress, t Poisson’s 
Coefficient Wd, % °C (°F) MPa (tsf) 

Frozen Sand 
19.0 -0.2 (31.6) 0.20 (2.0) 0.41 

19.0 -0.8 (30.6) 0.59 (6.1) 0.13 

Frozen Silty Loam 

28.0 -0.3 (31.5) 0.15 (1.5) 0.35 

28.0 -0.8 (30.6) 0.20 (2.0) 0.18 

25.3 -1.5 (29.3) 0.20 (2.0) 0.14 

28.7 -4.0 (24.8) 0.59 (6.1) 0.13 

Frozen Clay 

50.1 -0.5 (31.1) 0.20 (2.0) 0.45 

53.4 -1.7 (28.9) 0.39 (4.1) 0.35 

54.8 -5.0 (23.0) 1.18 (12.3) 0.26 
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CHAPTER 3:  RATIONAL MODEL FOR CHARACTERIZING THE MONOTONIC 

LATERAL RESPONSE OF DRILLED SHAFTS IN NON-COHESIVE SOILS 

A modified version of a paper to be submitted to the American Society of Civil Engineers 

Journal of Stuctural Engineering or similar journal 
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3.1 Abstract  

Lateral loading on superstructures and substructures comes in many different forms, but 

the design process of these elements is further complicated by the soil surrounding the 

foundation.  This paper presents a new rational model for the computation of the monotonic 

lateral load response of columns supported continuously supported on drilled shaft 

foundations.  The new rational model establishes critical design location and a bilinear lateral 

load response for the overall behavior of the system through the establishment of a cantilever 

supported on a flexible foundation at the maximum moment location using a series of simple 

equations.  Additional features of the proposed model include: (1) the ability to estimate 

ultimate shear demand and its associated location, and; (2) the ability to account for the 
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effects of seasonal temperature variations.  Verification of the model is provided using both 

analytical and experimental means that represent a column supported on a drilled shaft in 

non-cohesive soils. 

CE Database Keywords:  Foundations; Seismic design; Soil-Structure Interaction; Models; 

Concrete; Cold Temperature; Cohesive Soil 

3.2 Introduction 

Deep foundation design for structures requires the investigation of overturning since 

lateral loads (e.g., wind and seismicity) may cause high lateral forces and displacements 

within the structural systems.  For bridges in regions of high seismicity, it has become 

common to use columns continued directly into the ground as drilled shaft foundations to 

reduce the construction costs.  These deep foundation systems are highly influenced by the 

effects of soil-foundation-structure-interaction (SFSI), thus increasing the difficulty of 

characterizing the monotonic lateral load response of drilled shafts.  Besides maintaining 

equilibrium along the entire length of the shaft with the inclusion of nonlinear material 

behavior, the effects of temperature further complicate the process as critical locations and 

force demands vary significantly [Suleiman et al. 2006, Sritharan et al. 2007, Wotherspoon et 

al. 2009, and Wotherspoon et al. 2010].  This paper describes an improved rational model for 

reducing the computational time within detailed approaches while still characterizing the 

monotonic lateral response of drilled shafts in non-cohesive soils. 
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3.3 Background 

Methodologies that aim at reducing the complexity of engineering calculations are 

constantly being investigated to improve the efficiency of the overall design process.  The 

challenge associated with these models, however, is to maintain accuracy without losing the 

simplicity of the approach.  When accounting for the impacts of SFSI on a drilled shaft 

foundation and its aboveground superstructure, pushover analyses are the common approach 

to construct an equivalent cantilever that matches the stiffness of the combined column and 

foundation shaft such that the displacement at the column tip matches. 

AASHTO (2010) specifies a simple system that relates the ratio of the pile’s flexural 

rigidity to the modulus of elasticity of the soil, but only applies when the system behaves in a 

linear elastic manner.  In high seismic regions, however, structural systems commonly 

include nonlinearity from the combined behavior of the soil and reinforced concrete under 

lateral demands.  Thus, AASHTO (2010) suggests approaches presented in work by Chai 

(2002) and Priestley et al. (2007).   

Chai (2002) defines a simplified model that uses two points, the point of fixity and the 

maximum moment, to establish the flexural strength and ductility of the system when 

surrounded by soil to an equivalent elasto-plastic cantilever system.  This methodology 

relates the strength and ductility by relating the pile flexural rigidity, rate of increase of the 

horizontal subgrade reaction and the Rankine passive earth pressure.  The soil properties in 

these instances were established as a function of the relative density and friction angle of the 

cohesionless soil.  The elasto-plastic response of the system results in a perfectly plastic 
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displacement response post yielding that ignores the nonlinearity associated with steel, 

concrete and soil. 

Priestley et al. (2007) provides the work of Suarez and Kowalsky (2007) that establishes 

the design level displacement of the system using a series of nomographs or equations.  This 

methodology presents information solely based on the friction angle of the cohesionless soil 

and the boundary condition at the top of the column shaft.  Lateral shear demand is then 

found by approximating the viscous damping of the system due to elastic and hysteretic 

damping based on the design level spectral and displacement curves. 

Similar methodologies were developed for use in cohesive soils, but a recent study 

(Shelman and Sritharan 2013) found that a number of challenges were associated with their 

usage.  One noted challenge within this system was that the maximum moment location was 

commonly defined at the point of fixity within the system although inconsistent with the 

expected behavior of the overall structural system, Figure 3-1.  Additional shortcomings 

included: (1) the adequate capturing of the nonlinearity from soil, steel and concrete; (2) the 

definition of the analytical plastic hinge length in cohesive soils; (3) the minimal applicable 

range of soil parameters; (4) defining multiple points for establishing strength and ductility, 

and; (5) the lack of inclusion of seasonal temperature fluctuations.  To address these 

shortcomings, a rational method that captures both the force and displacement behavior was 

constructed as shown in Figure 3-2.  The proposed methodology used a set of three springs 

that established an equivalent cantilever supported on a flexible foundation at the point of 

maximum moment.  The flexible foundation effectively located the critical location for 
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damage and plastic deformation, while defining the rotation and translation that occurs from 

movement below this location.  The third spring in the model accounted for the resistance of 

the soil between the maximum moment location and the ground surface which improved the 

ability to handle seasonal temperature fluctuations.  Although a set of springs were used in 

the model to improve its versatility with structural analysis software, simple equations were 

provided based on structural equilibrium that define the global response at the first yield and 

ultimate limit states over the elastic and inelastic loading range. 

3.4 Formulation of Model in Non-Cohesive Soils 

Based on the development of a successful approach for accounting for SFSI in cohesive 

soils, equations were developed for a consistent approach in non-cohesive soils.  Using 

accurate representation of material nonlinearity, analytical models were constructed in 

LPILE Plus v 5.0 (Reese et al. 2004) and trends identified within the resulting data sets.  Soil 

p-y curves were established according to the American Petroleum Institute recommendations 

for sand above the water table (1987).  Soil parameters were chosen for a uniform layer of 

sand to maintain compatibility between unit weight, relative density and effective friction 

angle, Table 3-1, using the correlations for strength characteristics for granular soils in the 

Soil Mechanics Design Manual 7.01 published by the Naval Facilities Engineering 

Command (1986).  

3.4.1 Maximum Moment Location 

The maximum moment location establishes the effective height of the cantilever model, 

the critical region for inelasticity, locates all plastic rotation and locates the overall flexible 
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base for the model.  The results of the pushover analyses, Figure 3-3, indicated that the non-

dimensional maximum moment location (Lma/D) varied in a quadratic manner based on the 

normalized above ground column aspect ratio (Lcol/D) in agreement with current literature.  

The data further indicates that the variation in the coefficients for the quadratic trends would 

be a function of the effective friction angle such that the smaller the friction angle the larger 

the friction angle the smaller the maximum moment location.  The maximum moment 

location can be found using Eq. (3-1), where ma, ma and ma are coefficients calculated 

based off of the soils effective friction angle with a comparison between the equation and 

analytical data set in Figure 3-3. 

       [   (
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)    ]        Eq. (3-1) 

  where:                        -       

        -                      

        -                     

3.4.2 Zero Moment Location 

The next point established in the model definition identifies the point on the moment 

profile of Figure 3-2 where zero moment first occurs after the maximum moment location 

and translation is negligible.  This point is used to define the plastic rotation, translation and 

elastic rotation at the maximum moment location.  The results of the pushover analyses, 

Figure 3-3, indicate that the non-dimensional location (Lm0/D) would vary according to a 

power series, similar to the cohesive approach, based on the effective friction angle of the 

non-cohesive soil.  The magnitude and rate of decay of the power series was a function of the 
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aboveground column aspect ratio as indicated by the stacking in Figure 3-3.  The zero 

moment location is found using Eq. (3-2), where m0 and m0 are coefficients based on the 

above ground height of the column with a comparison between the equation and analytical 

data provided in Figure 3-3. 

                                  Eq. (3-2) 

  where:                             ⁄          ⁄   
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3.4.3 Translational Spring at Maximum Moment Location 

The lateral displacement occurring at the maximum moment location is handled with the 

translational spring as part of the flexible base.  A linear relationship between the non-

dimensional translation (t/D) and the non-dimensional distance between the maximum 

moment and zero moment location (Lmb/D) was found in the data; however, the slope and 

intercept were a function of the relative density of the soil.  This arose as the relative density 

of the soil causes the coefficient for the soil modulus as a function of depth to increase by a 

factor of 3.6 and 9 for medium and dense sands when compared to loose sands, Figure 3-4 

(API 1987).  Eq. (3-3) and Eq. (3-4) define the translation at the ultimate and first yield limit 

states, respectively.  Spring forces are computed using equilibrium of a free-body diagram 

associated with the proposed cantilever system at the ultimate and first yield limit states. 
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         Eq. (3-4) 

3.4.4 Rotational Spring at Maximum Moment Location 

Elastic rotation within the system at the ultimate and first yield limit states was found to 

be correlated to the relative density of the non-cohesive soil and vary linearly with Lmb/D.   

To account for the plastic action within the system, an analytical plastic hinge length, Lp, 

relating the section curvature to the total plastic rotation, p, was established as a function of 

Lmb/D.  Eqs. (3-5) to (3-8) establish the rotational aspects of the bilinear spring at the 

ultimate limit state based on flexural failure of the cross-section.  At the first yield limit state, 

the elastic rotation component is defined using Eq. (3-9).  The moment value for each of the 

limit states is taken as the ultimate and first yield moments of the foundation shaft within the 

expected plastic region produced from a moment-curvature analysis that adequately 

addresses material behavior through all seasons (e.g., see Shelman et al. 2010 and Levings 

and Sritharan 2012). 
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      Eq. (3-9) 

3.4.5 Translational Spring representing Soil 

The spring or multiple springs improve the models ability to account for P- effects 

occurring in the large deformations at the ultimate flexural failure, and the ability to account 

for seasonal freezing is further improved with this spring.  The p-y curve for the soil spring is 

established using the procedures of API-RP2A (1987) for a non-cohesive soil with 

appropriate modifications made for the influence of temperature on the soil material 

behavior. 

When a hand calculation is desired for establishing the tip lateral load and displacement, 

the ultimate soil pressure, pu, is computed and then multiplied by the effective height of the 

spring, h (h = Lma - Lcol for a single spring), to determine the resistance of the soil at the 

ultimate limit state, Vsu.  A similar process is needed at the first yield limit state, but 

calibration of the pushover data sets found that a coefficient , Eq. (3-10), could adjust the 

ultimate limit state to the first yield limit state through the use of a constant value.  The 

adjustment is performed by multiplying the soil resistance at the ultimate limit state by the 

coefficient . 

                             Eq. (3-10) 

3.4.6 Force-Displacement Response at Tip 

The global force-displacement bilinear response envelope can be found by summing the 

following individual components: (1) the total elastic displacement of the sytem, e; the total 
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plastic displacement, p; and (3) the initial translation at the maximum moment location, t.  

The total elastic displacement accounts for the elastic rotation below the maximum moment 

location, eb, and the elastic displacement above the maximum moment location, ea, due to 

the cantilever action produced from loading applied at the column tip.  The initial translation 

at the maximum moment location is found using Eq. (3-3) or (3-4) depending on the limit 

state that is being analyzed.  The plastic displacement is due to the plastic rotation, p, 

concentrated at the maximum moment location.  The final equation, Eq. (3-11), requires 

iteration on the tip elastic displacement, ea, to account for the P- effects present in the 

overall system.  The force at the column top, Vtop, is found at each limit state using a 

summation of moments about the flexible base accounting for the P- effects. 

                                           Eq. (3-11) 

  where,             

       
       

 

    
 

            

         or     

3.5 Maximum Shear Calculations 

Although the maximum moment location and top lateral force has been effectively 

established, the maximum shear does not typically occur within this region but rather deeper 

into the soil.  Two methods establish the point of maximum shear by relating the point of 

maximum shear to the point of maximum moment in Eq. (3-12) as long as the ratio between 
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clear height of the column and diameter is greater than 2.  If it is less than a value of 2, the 

maximum shear typically occurs at the column tip.   

         [      (
    

 
)      ]        Eq. (3-12) 

 The first method computes the maximum shear based on the soil causing a distributed 

loading on the foundation shaft between the maximum moment and maximum shear 

locations as shown in Figure 3-5. The loading is approximately parabolic in shape with a zero 

slope occurring at approximately 0.14 to 0.35 the length between the maximum moment 

location and the maximum shear location depending on the column aspect ratio.  In this 

method, the shear at the maximum moment location is taken to be a value of zero as expected 

from general beam theory and the maximum shear is then calculated as (pu @ Lma)(Lvu-Lma) 

where  is a coefficient that better defines the shape of the distributed load based on the 

aspect ratio of the above ground column, Eq. (3-13).  The  value computed by Eq. (3-13) 

approximately varies between 0.66 and 2.4, corresponding to different degrees of increase 

and decrease within the parabolic shape.  Alternatively, Eq. (3-14) may be used to 

conservatively compute the maximum shear associated with the distributed loading of soil 

along the foundation shaft. 

                  ⁄           Eq. (3-13) 

        [         (
    

 
)]         Eq. (3-14) 
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3.6 Verification of Proposed Method 

 Model verification was performed using data from full-scale testing of CIDH shafts in 

non-cohesive soils [Chai (2002)] and multiple nonlinear analyses of column-foundation 

systems using LPILE Plus v 5.0 (Reese et al. 2004).  These techniques allowed for the 

comparison of both local and global responses produced by the model.  This included an 

examination of the global force-displacement response, the maximum moment location, the 

elastic and plastic rotations, the displacement at the maximum moment location, and the 

location of the zero moment. 

3.6.1 Experimental Verification – Chai and Hutchinson (2002) 

 At the University of California – Davis (UCD) a series of full-scale field tests on two sets 

of identical continuous column/foundation systems using a quasi-static push pull sequence 

were constructed in medium dense and dense sand.  Using the structural and geotechnical 

information provided by Chai (2002), the experimental tests and proposed new method were 

compared graphically for the column top force-displacement response in Figure 6 and found 

to adequately capture the overall behavior.  A numerical comparison was conducted for the 

maximum moment location and found that the location was found within 9% - 35% 

accuracy.  This difference may be related to the translation of the maximum moment location 

between the yield and ultimate limit states.  The analytical models constructed using LPILE 

are also provided in Figure 3-6 where the difference in the ultimate limit states can be 

contributed to the conservatism within the model used for the determination of the plastic 

displacement of the overall system.  The conservatism is indicated in Figure 3-7, which 

demonstrates the differences as a function of friction angle and column aspect ratio. 
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3.7 Conclusions 

 A rational method accounting for the effects of SFSI was presented within this paper that 

improves upon the traditional approaches used for simplifying detailed finite element 

approaches.  The method was constructed to create a consistent approach with cohesive soils 

that was previously developed and produced a rational method that captures both the lateral 

force and displacement response of the column shaft. This was accomplished by constructing 

an equivalent cantilever supported by a flexible foundation at the critical design location for 

maximum moment using an equation based approach.  Verification of the proposed rational 

method was performed against experimental test specimens in a wide range of soils and 

analytical models using varying soil and structural parameters.  These verifications indicated 

that the model would perform adequately throughout the expected loading range with the 

assumption of a flexural failure at the point of maximum moment in the column or 

foundation shaft. 
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Table 3-1: Correlations used in the establishment of the constitutive soil models 

Relative 

Density 

Coefficient for 

Modulus 

Dry Unit Weight 

Effective Friction 

Angle 

Moisture 

Content 

% MPa/m (lb/in
3
) kN/m

3
 (lb/ft

3
) deg % 

25 6.79 (25) 

16.65 (106) 30.1 

Assumed 

drained 

well 

enough 

such that d 

~ m 

14.35 (91.33) 29.0 

15.6 (99.22) 29.5 

50 24.43 (90) 

17.55 (111.7) 33.6 

15.08 (96.02) 31.8 

16.34 (104.04) 32.7 

75 61 (225) 

18.43 (117.3) 37.0 

15.92 (101.33) 34.54 

17.16 (109.23) 35.72 
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Figure 3-1: Typical response of a drilled shaft subjected to a lateral force [reproduced 

from Shelman and Sritharan 2013] 
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Figure 3-2: Proposed new method [Reproduced from Shelman and Sritharan 2013] 
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Figure 3-3: Comparison of equation-based methods to analytical LPILE models (left) 

maximum moment location; (right) zero moment location 
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Figure 3-4: Variation in the coefficient for subgrade modulus with depth as a function 

of friction angle and relative density (after API 1987) 
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Figure 3-5: Free body diagram for determining the ultimate shear in the foundation 

shaft 
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 (a) Aspect Ratio 2 with Medium Sand  (b) Aspect Ratio 6 with Dense Sand 

 

Figure 3-6: Verification of the proposed method with experimental work by Chai (2002) 

and analytical LPILE models 
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Figure 3-7: Analytical plastic hinge length as a ratio of the normalized distance between 

the zero and maximum moment locations 
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CHAPTER 4:  CHARACTERIZATION OF SEASONALLY FROZEN SOILS FOR SEISMIC 

DESIGN OF FOUNDATIONS 

A modified version of a paper submitted to the American Society of Civil Engineers (ASCE) 

Journal of Geotechnical and Geoenvironmental Engineering 

Aaron Shelman
3
, James Tantalla

4
, Sri Sritharan, M. ASCE

5
, Sissy Nikolaou, M. ASCE

6
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4.1 Abstract 

An experimental investigation was performed on five widespread soil types common in 

the United States to characterize the effects of freezing temperatures on the unconfined 

compressive strength (qu), the modulus of elasticity (E) and strain at the unconfined 

compressive strength (qu).  Soil specimens were subjected to monotonic and cyclic loading 

with varying strain rates at temperatures ranging from 20°C (68°F) to -23°C (-9.4°F).  When 
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compared with test results at 20°C (68°F), testing at -20°C (-4°F) showed an increase in qu by 

a factor of 100, an average increase in E by a factor of 300 and an average decrease in qu by 

5% strain.  Increase in the soil compaction, moisture content and applied strain rate amplified 

the cold temperature effects on qu.  Additional testing at -20°C (-4°F) resulted in an increase 

in qu with no change in E when the applied strain rate was increased.  Cyclic 

experimentation produced data trends comparable to the monotonic experimentation for the 

mechanical properties, but allowed residual deformation as a function of cold temperature to 

be identified.  To assist with current seismic design practice, experimental trends were 

incorporated into a p-y curve development and the impact of observed soil response as a 

function of temperature is demonstrated using a series of pushover analyses on a column 

continued into the subsurface as a drilled shaft foundation.   

CE Database Keywords: Foundations, Seismic design, Soil properties, Soil-structure 

interaction, Cold temperature effects 

4.2 Introduction 

Despite the fact that past and present earthquakes have occurred across the world during 

times of seasonal freezing and that nearly 50% of bridges in seismic regions of the US can 

experience winter earthquakes (Sritharan and Shelman 2008), the influence of temperature on 

the effects of soil-foundation-structure-interaction (SFSI) under seismic conditions is not 

well understood.  The effects of SFSI in wintry conditions were studied in an exploratory 

study performed at Iowa State University (Suleiman et al. 2006 and Sritharan et al. 2007).  

This study consisted of experimental and analytical programs to identify additional 
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considerations that may be required for the design of columns supported on cast-in-drilled-

hole (CIDH) shafts.  The study found that the effects of freezing on concrete, steel and soil 

would influence the lateral load behavior of the drilled shafts with the soil component having 

the largest impact.  Although a stiffer soil causes less lateral deflection to the overall system, 

the column and CIDH shafts are adversely affected to the extent of brittle failure because the 

critical moment location [i.e., in-ground plastic hinge] shifts towards the ground surface, the 

shear and moment demands increase in both the column and foundation shafts, and the 

plastic hinge length decreases.   

Further investigation (Wotherspoon et al. 2010) on the dynamic response of CIDH shafts 

subjected to seismic ground motions, with return periods between 25-years and 2500-years, 

concluded the following: (a) maximum bending moment and shear demands would be larger 

in winter conditions than in summer conditions; (b) the peak shear demand for the 2500-year 

return period in the summer was 56% of the section capacity compared to 76% in the winter; 

(c) for the 500-year return period, 29% of the displacement capacity of the column and 

foundation system was reached compared to 62% of the displacement capacity in times of 

seasonal freezing; and (d) more cycles of high strain deformation will occur in wintry times 

that may result in failure of the drilled shafts due to low-cycle fatigue. 

To address the aforementioned challenges in routine seismic design practice involving 

pushover models, appropriate modifications need to be introduced.  Given that the largest 

influence to lateral response in these models comes from the temperature effects on the 

properties of soil surrounding the foundation, the main focus of this paper was to characterize 
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the behavior of soil at different cold temperatures using monotonic loads so that suitable p-y 

curves can be appropriately developed.    Specifically this paper examines the monotonic 

characteristics of five soil types that are widespread in seismic regions of the United States as 

a function of cold temperatures. Influence of variables such as unit weight, moisture content, 

strain rate and cyclic loading were also examined 

4.3 Background 

Frozen soil appears throughout the world due to fluctuations in seasonal temperature and 

permanent ground freezing in the form of permafrost.  Engineering behavior of permafrost 

for the design of structures in artic regions has been studied by numerous researchers.  

Additionally, seasonal freezing of soil has been found to have many benefits during the 

construction process due to the stiffening of soil surrounding a given location therefore 

creating a safer working environment.   

Mechanical properties of frozen soils have been studied in the past by researchers to 

improve the design of foundations under non-seismic conditions (Tsytovich 1975, 

Andersland and Anderson 1978, Andersland and Ladayani 1994 and Harris 1995).  

Typically, the main focus of these studies was on properties related to the long term creep 

behavior of permafrost through loading applied over long time periods and the heave 

associated with frozen soil.  Although these are important topics for the design of structures 

in soil that experience permanent freezing, several outcomes of these studies are not directly 

applicable to seismic design that deals with loading over a short duration.   
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However, the general trends established for the frozen soils in these studies are valuable, 

and are thus summarized herein.  The shear strength of soil increases with the decrease in 

temperature (Figure 4-1), increases with an increase in applied strain rate, decreases with 

duration of applied load, and increases as the amount of unfrozen water content decreases 

(Tsytovich 1975, Andersland and Ladayani 1994 and Harris 1995).  Figure 4-1 provides 

information on the strength gain of ice, indicating the impact of ice as a function of cold 

temperature; however, variation exists as ice compression strength varies with crystal 

structure, rate of freezing, chemical composition, testing temperature and many other factors.  

Studies have reported that the shear strength of sands, clays and silts increase by a factor of 

two to four times when the temperature went from -1°C (30.2°F) to -10°C (14°F) and an 

eightfold increase as the temperature decreased from 20°C (68°F) to -2°C (28.4°F) (Tsytovich 

1975, Andersland and Anderson 1978, Andersland and Ladayani 1994). 

Deformability of soil reduced when subjected to freezing temperatures, established by 

examining either the initial secant modulus of elasticity or secant modulus of elasticity at 

50% of the peak stress (Tsytovich 1975 and Andersland and Ladayani 1994).  The modulus 

of elasticity in sands and silts increased when temperature decreased and resulted in a factor 

of four to one hundred increase between -1°C (30.2°F) and -10°C (14°F) (Tsytovich 1975 and 

Andersland and Ladayani 1994).  Additionally, Poisson’s ratio was found to decrease with a 

decrease in temperature (Tsytovich 1975 and Shibata et al. 1985) suggesting that the 

deformability decreases as lateral spread cannot occur as easily. 
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Limited studies confirm that applied strain rate affects the overall compressive strength 

and deformability characteristics (Zhu and Carbee 1984 and Andersland and Ladanyi 1994).  

Testing on frozen sands (Andersland and Ladanyi 1994) between 0.006% and 20% strain per 

minute provided data suggesting that as strain rate increased, the compressive strength 

increased by a factor of two to five while experiencing a shift in the failure mode from plastic 

to brittle.  Frozen silt strength was found increase by a factor of 25 as strain rate was 

increased from 0.6% per minute to 30,000% per minute at -9.4°C (15°F).  Cyclic testing on 

frozen sands at -4°C (24.8°F) with strain rates less than 0.05% strain per minute was found to 

result in lower peak stress than static testing performed at similar rates of loading. 

Additional drawbacks of the previous research studies include: 1) testing completed and 

referenced back to a known temperature below 0°C (32°F); and 2) strain rate investigations 

were limited to sands and silts (Tsytovich 1975, Andersland and Anderson 1978, and 

Andersland and Ladanyi 1994).  Using a known temperature allowed for easier relationships 

to be established for the design process, however, soil testing laboratories rarely have the 

capability for testing at frozen temperatures to establish a base value.  A practical approach 

would be to establish seasonal temperature variations with respect to a common room 

temperature [e.g., 20°C (68°F)], enabling designers to more readily account for cold 

temperature effects in design and analysis.  

4.4 Test Plan 

In parallel with experimental investigations conducted on A706 steel reinforcing bar 

(Levings and Sritharan 2011) and concrete (Shelman et al. 2010), an experimental 
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investigation was undertaken to investigate the behavior of frozen soils. The main objectives 

of this study were 1) to identify trends for critical parameters (e.g., ultimate compressive 

strength, soil modulus of elasticity, etc.) of frozen soils with respect to a preselected 

temperature reference of 20°C (68°F); and 2) the establishment of modified stress-strain 

curves as a function of temperature to be used for defining p-y curves so that SFSI analyses 

can be performed with consideration to seasonal temperature effects.  Although repeated 

loading and unloading of soils is common in high seismic regions, a monotonic approach is 

commonly employed to determine the lateral response of a structural system.  Therefore the 

monotonic behavior of frozen soils was the main focus of the exploratory program with 

cyclic behavior being defined to examine potential degradation concerns. 

In seismic regions of the United States, numerous soils are encountered during site 

investigations for foundation construction.  The in-situ soils may range from alluvial to loess 

based on the depositional environment that each one may have experienced over time.  The 

goal was to include multiple soils that could be found at bridge sites throughout the United 

States, while giving consideration to areas of high seismicity.  A total of five soil types were 

chosen as shown in Table 1 based on geologic depositional nature, but for convenience, all 

soils were collected from the state of Alaska as a recent project was conducted with the 

Alaska Department of Transportation and Public Facilities (ADOT&PF) and the Alaska 

University Transportation Center (AUTC).  The project area included soils with a 

depositional nature consisting of prior glacial expanses and nearby waters which led to the 

presence of glacial, alluvial and even lacustrine deposits.  Moreover, the area undergoes 
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seismic events in freezing temperatures on a regular basis.  The soil types were then 

classified as I through V based on the expected frequency of encounters at a bridge site with I 

being the most frequent type.  The anticipated maximum cold temperature to be experienced 

by the soils was -30°C (-22°F).  

4.5 Test Setup 

In order to capture the changes in soil behavior and engineering properties at subzero 

temperatures, a specially designed triaxial chamber was used.  The chamber allowed for a 

liquid (e.g., antifreeze or salt water) capable of maintaining frozen temperatures to be 

circulated around the soil specimen, thus creating a temperature-controlled environment.  

The testing apparatus that was designed and used at Mueser Rutledge Consulting 

Engineering (MRCE) firm in New York City is provided in Figure 4-2.  

The chamber labeled 1 in Figure 4-2 consists of a top and bottom plate separated by a 

large diameter clear tube capable of sustaining a horizontal pressure.  A rigid plate at the 

bottom of the tube created a surface for supporting the specimen as well as ports to put the 

desired liquid into the chamber.  The top plate was modified to allow copper coils to be 

placed around the specimen that would constantly circulate the cold liquid with a pump in 

order to maintain the temperature and still allow a compressive axial load to be applied up to 

44.5 kN (10 kip).   

4.6 Specimen Preparation 

Disturbed soil samples were obtained during drilling at various project sites and shipped 

to New York for testing. The samples were then separated into groupings proposed in Table 
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1 and kept in plastic containers until the time of sample preparation.  At the time of 

preparation, water was added to the soil to make the desired moisture content.  Specimens 

were then created by loosely placing soil into a mold supported on a hard surface while using 

a consistent effort to compact the soil in three lifts.  Depending on the desired moist unit 

weight, the number of blows used in the compaction effort was either increased or decreased.  

Upon completion, the specimens and molds were placed inside a freezer (2 in Figure 4-2) at -

25°C (-13°F) as needed and stored in the lab facilities until testing.  

Prior to testing, frozen and unfrozen samples were extruded from the mold using standard 

practices and trimmed to the correct two inch diameter with level ends for testing purposes.  

Once all trimming was completed, the specimen was measured and placed between the upper 

and lower loading plates and then covered with a neoprene membrane to protect the sample 

from contamination inside the testing chamber.   

4.7 Test Matrix 

Using the information provided in Table 1, sixty soil samples were constructed from the 

five soil types with three samples per soil type and testing temperature to allow for variation 

in ice formation.  As summarized in Table 2, the distribution of these samples covered the 

influence of several variables including moist unit weight, moisture content, loading rate, and 

the following final target temperatures: 20°C (68°F), -1°C (30.2°F), -10°C (14°F), and -20°C 

(-4°F).  40% of the samples constructed were Type I soil and was expected to be the soil 

most commonly encountered around a bridge site based on depositional environment and was 

therefore a primary focus of the investigation (Shelman et al. 2010).  The Type I alluvial soil 
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provided as part of this study was classified as a CH soil using the unified soil classification 

system (USCS) and would further improve the frozen soil information on a clay soil which 

was considered a main goal.  The remaining four soil types were used for the establishment 

of general trends between the extreme testing temperatures.  Moisture content and testing 

unit weight were specified based on average values expected to occur in the field (Shelman et 

al. 2010), but the actual testing values did not correspond with the specified values at all 

times.  This was the case within the Type II and Type IV specimens where moisture content 

of 30% was specified and some of the Type IV specimens only reached 10% moisture 

content.  In six of the Type I soil specimens, the moisture content was varied by ±15% to 

examine the impacts of additional water in the pore structure on the strength at -20°C (-4°F).  

Similarly, the moist unit weight was varied over a range of 3.6 kN/m
3
 (22.7 pcf) to examine 

the variation in strength at -20°C (-4°F) without modifications to the moisture content.  

Furthermore, variable loading rates were used for identifying the differences in the modulus 

of elasticity and strength.  In addition to the testing for material properties with variable 

temperature, additional testing was performed at -1°C (30.2°F) and -20°C (-4°F) under 

repeated loading and unloading with variable loading rates. 

4.8 Loading Protocols 

Monotonic testing in an unconsolidated, undrained state with minimal to no confining 

pressure was used for the majority of the testing since shallow soils have the greatest impact 

on the lateral response of the system [e.g., 10 cm (4 in.) can influence the response (Sritharan 

et al. 2007)].  This testing consisted of applying a compressive force to the soil specimens at 
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the desired loading rates of 0.1%, 1% and 10% strain per minute.  The cyclic loading was 

performed on selected samples at two different loading rates, 1% and 10% strain per minute, 

with the overall pattern consisting of loading the samples to the set target strain, then fully 

unloading the specimen before proceeding to the next target strain.  Once a strain of 1% was 

reached for the first time in the loading pattern, the effects of reloading to a certain strain 

level were examined by reloading to that strain point two additional times before proceeding 

to the next target strain.  Each target strain in the pattern selected for the cyclic testing, 0.25% 

minimum and 15% maximum, was based on observations made of the stress-strain curves 

obtained from the monotonic triaxial testing on the alluvial soil (see Table 2).  The goal of 

the three cycles at each level was to identify whether any loss in soil strength or change in the 

residual deformation would occur with the repeated nature of the loading.   

4.9 Test Observations 

Each specimen was allowed to stabilize at the desired temperature as measured by a steel 

probe thermocouple placed in the center of the triaxial chamber, taking between 3 and 24 

hours.  Upon stabilization, an external control loading system (3 in Figure 4-2) was activated 

to apply consistent loading at the desired strain rate.  The applied force and vertical 

deformation to the sample were recorded in order to establish the stress-strain curves similar 

to that in Figure 4-3 as well as identify the following critical parameters: initial, secant and 

unload/reload moduli, shear strength, and strains.  Unconfined compressive strength (qu) of 

the soil was determined by the peak stress on the stress-strain curve and the associated strain 

was defined as f.  Undrained shear strength (cu) was taken as one-half of the unconfined 
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compressive strength.  Additionally, the modulus of elasticity (E) was approximated to a 

secant value between the origin and one-half the peak stress on the stress-strain curve, much 

like the approach in Reese and Welch (1975). 

4.10 Results and Discussion 

Between the testing temperatures of 20°C (68°F) and -22.8°C (-9°F), the mechanical 

properties of the five soil types experienced the following: (1) an increase in the elastic 

modulus; (2) an increase in the ultimate compressive strength; and (3) a decrease in the strain 

at peak stress.  Figure 4-4 graphically describes this trend for a Type I soil in which the 

elastic modulus increased by a factor of 300, the ultimate compressive strength increased by 

a factor of 80, and the strain at peak stress decreased by 5% strain (i.e.,  = 5%). 

4.10.1 Unconfined Compressive Strength (UCS) 

An analysis of the stress-strain curves for the five soil types was performed by 

constructing a chart of the UCS ratio (see Figure 4-5) for all soils and temperatures with 

respect to the measured warm weather unconfined compressive strengths at 20°C (68°F).  

The unconfined compressive strength of the Type IV soil was not provided at -1°C (30.2°F) 

as there was only a limited amount of material obtained for this soil type. 

The data provided in Figure 4-5 suggests that the transition from pore water to pore ice 

significantly alters the ultimate compressive strength of the soil as the amount of partially 

frozen water decreases in the specimen as the temperature decreases.  The relative increase in 

strength varies greatly between soil types at first examination, but a closer examination of the 

data reveals that the UCS of the soils has a consistent increase as a function of temperature.  
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This is depicted in Figure 4-5 where the relative increase is a factor of 10 at -1°C (30.2°F) 

and a factor of 100 at -20°C (-4°F), respectively.  

4.10.2 Strain at UCS, f 

Each soil type tested resulted in a general decreasing trend in strain at UCS as the data set 

in Figure 4-6 demonstrates.  Within Figure 4-6, a large scatter in the data exists as the strain 

at the peak stress will be dependent on soil type, internal structure, water content and other 

factors.  Although the rate of decrease in individual soil types varied from 0.5% to 10% 

strain, a conservative estimate of the overall decrease in strain from 20°C (68°F) to -20°C (-

4°F) at UCS would be 5% based on the trend for all the soil types. 

4.10.3 Elastic Modulus 

As expected, the strength gain and reduced f with decreasing temperature resulted in the 

increase of the secant modulus of elasticity.  The overall gain at -20°C (-4°F) varied between 

a factor of 200 and 400 with respect to the reference warm temperature, and followed a 

curvilinear trend as seen in Figure 4-7. 

Type II Soil Effects 

The Type II soil had noted differences from the other four soil types tested in this 

program.  This was believed to be a result of the higher moisture contents throughout testing 

and the depositional environment of the ice contact deposits.  The relative increase in the 

UCS was 140 at -1°C (30.2°F) and 740 at -20°C (-4°F).  The strain at UCS experienced a 

decrease of 8% strain from 20°C (68°F) to -20°C (-4°F).  The modulus of elasticity gain at -

20°C (-4°F) was between a factor of 1000 and 1800. 
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Additional Type I Soil Testing 

A number of additional tests were performed on the Type I soil to investigate the impact 

of moist unit weight, moisture content and strain rate at frozen temperatures.   

4.10.4 Moist Unit Weight Effects 

The Type I soil was tested to examine the effects of moist unit weight when tested at 

freezing temperatures.  Classified as a CH soil, the moisture content was maintained at 

approximately 27% and moist unit wieght varied from 15.5 kN/m
3
 (100 pcf) for the loose 

material to 19.0 kN/m
3
 (120 pcf) for the dense material.  At each level, three specimens were 

tested and results indicated a linear increase in strength as a function of moist unit weight, 

see Figure 4-8.  This overall linear trend was expected based on the warm weather behavior 

where the friction increases in the internal matrix from additional compaction, assuming that 

the soil is not over the peak compaction and moisture content location. 

4.10.5 Moisture Content Effects 

The amount of moisture within the soil specimen directly impacts the undrained shear 

strength of the soil as it impacts the ice matrix and the peak point of the compaction versus 

moisture content curve.  The results produced from varying the moisture content in the Type 

I soil are shown in Figure 4-9 with an additional point produced using data provided in 

Figure 4-8 (i.e., the square data point).  This point corresponds to a moisture content of 

28.1% at a moist unit weight of 17.0 kN/m
3
 (108 pcf) with an undrained shear strength of 

approximately 3600 kPa (37.6 tsf).  The data point adjusted the trend such that the effects of 

strength gain associated with reaching the optimum moisture content were not influencing 
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the overall trend.  This point is plotted as the square in Figure 4-9, which concludes that as 

moisture content increases at a consistent moist unit weight, the undrained shear strength 

increases linearly as a function of moisture content. 

4.10.6 Strain Rate 

The strain rate was varied from 0.1% to 10% strain per minute for monotonic loading of 

the Type I soil at -20°C (-4°F) and the results depicted an increase in the ultimate 

compressive strength, strain at the ultimate compressive strength and the elastic modulus of 

elasticity.  Results for the strain and compressive strength are provided in Figure 4-10.  The 

modulus of elasticity increased by approximately 25% using the secant method, but a 

relatively large scatter was present.  A further examination of the stress-strain curves and 

tangent modulus along the initial point of the stress-strain curves led to the conclusion that 

the modulus did not change significantly over the tested strain rates. 

4.10.7 Cyclic Loading 

Cyclic testing was performed on the Type I soil at -1°C (30.2°F) and -20°C (-4°F) along 

with variable loading rates of 1% and 10% strain per minute.  The results for the cyclic 

testing at 1% strain per minute are provided in Figure 4-11.  The envelope of the data concurs 

with the monotonic testing where an increase in the ultimate compressive strength and the 

modulus of elasticity of the Type I soil were a function of temperature.  Additionally, the 

data sets indicate that the unloading and reloading moduli were approximately equal to the 

initial soil modulus of elasticity found for the temperature at which the samples were tested.  

A key result was that residual deformation occurred after each cycle and was a function of 
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temperature. At -1°C (30.2°F), the residual deformation was 93% of the peak strain while at -

20°C (-4°F) the residual deformation was 80% of the peak strain.  Furthermore, degradation 

occurred after the first loading level of a new cycle such that the peak stress in the second 

and third cycles was 80% of the peak stress in the first cycle.  Further tests would be required 

to better define the amount of degradation associated with higher number of cycles similar to 

approaches in unfrozen soils.  Additionally, increasing the strain rate from 1% to 10% caused 

a 30% increase in the UCS, while the secant modulus of elasticity to 50% of the peak stress, 

the unloading/reloading moduli and residual deformations were generally unaffected at -20°C 

(-4°F). 

4.11 Integration into Seismic Design 

In lateral loading of deep foundations subjected to a design level or greater seismic event, 

the presence of soil is typically accounted for using p-y curves, which can be constructed 

using laboratory stress-strain curves [e.g., Reese and Welch (1975)].  By representing the soil 

as a series of springs along the length of the foundation, the continuity between the soil and 

pile is adequately addressed.  Sritharan et al. (2007) and Wotherspoon et al. (2009) 

demonstrated that this technique would work even at cold temperatures when using programs 

such as LPILE (Reese et al. 2004) and Ruamoko (Carr 2005).  

The construction of p-y curves can be done by many methods, but a common approach 

suggested by Reese and Welch (1975) relates the shape of the stress-strain curve to the soil 

displacement using Eqns. (4-1) and (4-2) with the exponent a = 0.25 and b = 0.5 for warm 

weather conditions.  Crowther (1990) suggested that a = 0.43 is a good estimate for frozen 



www.manaraa.com

152 

 

 

 

soils and was shown to be successful in studies involving frozen soils (Sritharan et al. 2007 

and Wotherspoon et al. 2009). 
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            Eq. (4-1) 

  where: y       = soil deflection 

y50  = soil deflection at one-half the ultimate soil reaction 

  = strain in the soil 

50  = strain at one-half maximum principal stress difference  
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           Eq. (4-2) 

  where: y       = soil deflection 

y50  = soil deflection at one-half the ultimate soil reaction 

p  = soil reaction  

pu = ultimate soil reaction 

4.11.1 Example p-y curves 

Starting with a typical stress-strain curve for the Type I soil subjected to monotonic 

loading at the warm weather, the cold temperature stress-strain curves up to the UCS can be 

approximated using the following relationships based on the experimental work presented 

herein: (a) UCS ratio of 10 at -1°C (30.2°F) and 100 at -20°C (-9°F) based on Figure 4-5, 

where qu,warm is at 20°C (68°F); (b) a decrease in strain, f, of 1.25E-3 /°C (6.5E-4 /°F) as 

shown in Figure 4-6; (c) an increase in the stiffness ratio (Efrozen/Eroomtemp) equal to 36.86e
-
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0.083[T(in Celsius)]
-5.30 (see Figure 4-7); (d) E = 0.5qu/50 and stress-strain curve is linear up to 

the point of (50,0.5qu); and, (e) after reaching 0.5qu, the stress-strain curve follows a 

logarithmic trend up to the adjusted UCS and f location.  As with current practice (e.g., 

Reese et al. 2004), after construction of the adjusted stress-strain curve, the degradation of 

soil subjected to loading and unloading could be accounted for at this stage by multiplying 

the resulting stresses in the curve by a factor of 0.8 based on the cyclic degradation observed 

in this study for a CH soil or a value deemed appropriate for other soils based on engineering 

judgment.  The p-y curves are then constructed using Eqns. (4-1) and (4-2).  This process 

was performed for a 0.6 m (24 in.) diameter foundation shaft at a soil depth of 10 cm (4 in.) 

surrounded by the Type I soil with a moist unit weight of 19.5 kN/m
3
 (124.1 pcf).  The 

resulting stress-strain and p-y curves are provided in Figure 4-12, where the increase of 10 

and 100 for the stress-strain curves relate to an increase of 10.9 and 109, respectively, in the 

p-y curves. 

4.11.2 Impact on Lateral Response 

To understand the significance of the modified p-y curves, pushover analyses were 

condicted using a full nonlinear analysis at three different temperatures [i.e., 20°C (68°F), -

1°C (30.2°F) and 2  at -20°C (-9°F)] in LPILE (Reese et al. 2004) similar to the approach 

presented by Sritharan et al. (2007).  A 0.61 m (24 in.) diameter (D) drilled shaft that 

extended above the ground 4.42D and into the ground 17.1D was specified with a 2% 

longitudinal reinforcement ratio, a 0.9% horizontal reinforcement ratio, and a 5% axial load 

ratio to represent a typical seismic bridge column.  Materials and the associated properties 
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were consistent with the following: (a) concrete compressive strength of 27.6 MPa (4000 

psi); and (b) reinforcing steel of A706 Grade 60 steel.  The nonlinear moment-curvature 

behavior for the column and foundation shaft was established through a section analysis 

program available at Iowa State University (Levings 2009).  For the purposes of this study, 

the influence of temperature on concrete and steel were not included for the following 

reasons: 1) the impact of frozen soil alone was desired and 2) previous research has shown 

that these material properties have a minimal impact on the response (Sritharan et al. 2007).  

The soil surrounding the foundation shaft had properties as specified in the p-y curve 

example section and was considered to be uniform along the entire length in the unfrozen 

state and no water table was present.  The frozen state at the two cold temperatures was 

handled by including a uniform frozen soil to a depth of 10 cm (~4 in.) from the ground 

surface based on the work of Sritharan et al. (2007), having unfrozen soil properties below 

that location.  A further analysis was conducted at -20°C (-9°F) with the more realistic frozen 

depth of 1.2 m (47.25 in.), appropriate for this temperature (Sritharan et al. 2007).  

The results of the pushover analyses summarized in Figure 4-13 and Figure 4-14 indicate 

that as the temperature decreased, the lateral displacement at the top of the column decreased 

as expected, but the shear demand increased significantly.  With only a frozen soil depth of 

10 cm (~4 in.), shear demand in the foundation shaft increased by up to 19% while the shear 

demand in the column increased by up to 61%.  These changes in the structural demands of 

the system arise with the shifting of the maximum moment location towards the ground 

surface by 1.77 m (5.8 ft) and the length over which plastic action takes place (i.e., length for 
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which yield moment was exceeded) decreasing over the temperature range examined.  These 

results indicate the potential for brittle failure and that the plastic hinge will not form in the 

desired location identified during the warm weather condition. 

The results of the second pushover analysis at -20°C (-4°F) with a frozen soil depth of 1.2 

m (47.25 in.) indicate a further increase in the shear demand while decreasing the 

displacement.  Although the impact of the increase in frozen soil appears to be minimal in the 

force-displacement responses in Figure 4-13, the foundation shear demand in this case 

increased by 128%, while the column shear demand did not change significantly.   

4.12 Conclusions 

This paper presented an investigation into the characterization of frozen soils for use in 

the seismic design of foundations and incorporation into p-y curves in SFSI modeling.  

Suggestions for this characterization were based off the experimental testing of five soil 

types representing areas expected to experience seasonal freezing.   

Testing was performed in a specially designed triaxial chamber under monotonic and 

cyclic loading with variable loading rates and temperatures.  Temperatures of 20°C (68°F) 

and -23°C (-9.4°F) were used as the upper and lower limit testing temperatures as they 

corresponded to the temperature range expected throughout the United States where freezing 

occurs.  The conclusions drawn from this study are as follows: 

1. The unconfined compressive strength of soil significantly increases with colder 

temperatures.  The multiple soil types tested (Type I through V, excluding II) typically 

had the strength ratio increase by a factor of 10 at -1°C (30.2°F) and 100 at -20°C (-4°F). 
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2.  The strain at the unconfined compressive strength decreased by 0.05  between the 

upper and lower limit testing temperatures for all soils.  This corresponds to a drop in 

strain of 1.25E-3 /°C (6.5E-4 /°F) as a function of temperature for all the soil types 

tested. 

3.  The stiffness ratio increased in an exponential manner to an average factor of 300 at -

20°C (-4°F) for Type I through Type V soils, excluding Type II soils. 

4.  Increasing the moist unit weight of the soil specimens caused an increase in the 

unconfined compressive strength at -20°C (-4°F).  Additionally, the increased moisture 

content caused a higher amount of ice in the void spaces, which led to an increased 

unconfined compressive strength at -20°C (-4°F). 

5.  The Type II soils tested in this program did not follow the same magnitudes of 

increase for the UCS and soil modulus of elasticity.  In this instance, the UCS ratio 

increased by 140 and 740 at -1°C (30.2°F) and -20°C (-4°F), respectively.  The stiffness 

ratio increased by a factor of 1000 to 1800 at -20°C (-4°F). 

6.  Additional testing of Type I soils was performed to examine the influence of moist 

unit weight, moisture content and strain rate.  The increasing trends for the moist unit 

weight and moisture content tests were as expected based on the current understanding of 

warm weather behavior.  Variation in the rate of monotonic loading of the Type I soils 

between 0.1% and 10% strain per minute resulted in an increase of the unconfined 

compressive strength and strain at the associated level.  However, the modulus of 

elasticity was unaffected by strain rate over the testing range. 



www.manaraa.com

157 

 

 

 

7.  Cyclic loading of the warm and frozen soil specimens produced data trends similar to 

that of the monotonic testing for the strength ratio, stiffness ratio and strain at the 

unconfined compressive strength.  The residual deformation of the soil type tested was 

93% of the peak strain value at -1°C (30.2°F) and 80% of the peak strain at -20°C (-4°F).  

Additionally, strain rate effects were the same as the monotonic specimens at -20°C (-

4°F). 

8.  The influence of frozen soil on the lateral load response of a column continuously 

supported on a CIDH was found to be significant.  The column and foundation shear 

demands increased by 19% to 128%, depending on the depth of frozen soil and 

temperature being examined.  Additionally, the critical design location shifted towards 

the ground surface by over a meter at the extreme testing temperature of -20°C (-4°F), 

emphasizing the importance of accounting for seasonal temperature variation. 
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Table 4-1: Description of Collected Soils / Types 

ID Specified Soil Type USCS* 
Expected Saturated 

Moisture Content 

Expected Dry Unit 

Weight 

I Alluvial Deposits CH 10% - 50% 10 kN/m
3
 – 30 kN/m

3
 

II Glacial Till/Ice 

Contact Deposits 

SP-SM 10% - 50% 10 kN/m
3
 – 30 kN/m

3
 

III Estuarine/Lacustrine SM 15% - 30% /  

90% - 150% 

(Silty,Clayey/Organic) 

8 kN/m
3
 – 20 kN/m

3
 

IV Glacial Outwash SP-SM 10% - 50% 10 kN/m
3
 – 30 kN/m

3
 

V Loess ML 15% - 30% 10 kN/m
3
 – 17 kN/m

3
 

        * USCS classification based on the disturbed soil samples provided by the ADOT&PF for the specified soil types  
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Table 4-2: Soil Testing Parameters 

Soil Type 
No. of 

Tests 

Test 

Temperature 

Test 

Moisture  

Content (%) 

Test Moist 

Unit 

Weight 

(kN/m
3
) 

Loading 

Rate 

(%/min) 

I: Alluvial Deposits 

3 -23°C 27.23 18.61 1 

3 -20°C 28.03 18.60 1 

3 -10°C 22.05 17.97 1 

3 -1°C 23.06 18.53 1 

3 20°C 25.33 19.51 1 

3 -20°C 28 15.44 1 

3 -20°C 24 19.02 1 

3 -20°C 17.93 17.42 1 

3 -20°C 41.2 16.79 1 

2 -1°C 23.75 18.96 0.1 

2 -20°C 30.13 17.87 0.1 

2 -20°C 29.95 18.04 10 

II: Glacial Till/Ice Contact 

Deposits 

3 -20°C 35.13 17.47 1 

3 -1°C 35.1 17.55 1 

3 20°C 39.4 19.07 1 

III: Estuarine/Lacustrine  

3 -20°C 29.37 18.49 1 

3 -1°C 32.13 18.89 1 

3 20°C 31.47 19.18 1 

IV: Glacial Outwash 

3 -20°C 26.33 17.97 1 

3** -1°C 30** 20** 1 

3 20°C 10.77 22.90 1 

V: Loess 

3 -20°C 26.88 18.53 1 

3 -1°C 25.78 18.61 1 

3 20°C 29.97 18.68 1 

Total Tests 
66 

Samples 
    

Additional Testing – Repeated Loading and Unloading under Variable Loading Rates 

I: Alluvial Deposits 

2* -1°C 30 20 1 

2* -20°C 30 20 1 

2* -20°C 30 20 10 

Total Additional Tests 6     

*Indicates cyclic loading at stated strain rate 

**Not tested due to lack of material 
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Figure 4-1: Temperature dependence of unconfined compressive strength for several 

frozen soils and ice [reproduced from Andersland and Anderson (1978)] 
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Figure 4-2: Schematic of test setup for frozen soils testing at MRCE 
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Figure 4-3: A measured stress-strain curve for a Type I soil sample at -20 °C (-4 °F) 
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Figure 4-4: Stress-strain response of a Type I soil subjected to monotonic loading at 

different test temperatures 
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Figure 4-5: Strength comparison of soils tested at various temperatures (a) room 

temperature results; (b) unconfined compressive strength (UCS) ratio 

[Note: 1 kN/m3 = 6.3659 lb/ft3; 1 kPa = 0.01044 tsf] 
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Figure 4-6: Variation of strain with temperature at qu 
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Figure 4-7: Effects of temperature on the stiffness ratio under monotonic loading 
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Figure 4-8: Effects of moist unit weight on the undrained shear strength of a CH soil at -20 

°C (-4 °F) 
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Figure 4-9: Effects of moisture content on the undrained shear strength of a CH soil at -20 

°C (-4 °F) 
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Figure 4-10: Effects of strain rate on a Type I soil at -20 °C (-4 °F)
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Figure 4-11: Experimental cyclic stress-strain results of a Type I soil subjected to subzero 

temperatures and a loading rate of 1% strain per minute 
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Figure 4-12: Stress-strain and p-y curves for a Type I soil using experimental 

recommendations 
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Figure 4-13: Monotonic force-displacement response of example column supported by a 

CIDH shaft 
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Figure 4-14: Shear and moment demand of example column supported by a CIDH shaft
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5.1 Abstract 

This paper presents the results of an experimental investigation conducted on confined 

and unconfined normal strength concrete at varying temperatures to aid in seismic design of 

structures that experience seasonal freezing.  Test data was collected by performing 

monotonic testing of concrete specimens with multiple levels of confinement at 20°C (68°F), 

-1°C (30.2°F), -20°C (-4°F), and -40°C (-40°F) within a controlled environment.  Key 

parameters used in defining the stress-strain behavior of confined concrete were investigated 

in this study including: compressive strength, modulus of elasticity, strain at peak 

compressive strength, and ultimate concrete strain.  Compressive strength and modulus of 

elasticity were found to increase while the strain at peak compressive strength decreased as 

temperature decreased.  Ultimate concrete strain was found to be unaffected by temperature.  

The study further indicated that confined concrete behavior does not follow 

recommendations used in practice simply by adjusting the expected material properties when 

subjected to cold temperatures.   

Keywords: Cold Weather; Stress-Strain Diagram; Confined Concrete; Material Behavior; 

Temperature 

5.2 Introduction 

In a study by Sritharan and Shelman (2008) it was found that approximately two-thirds of 

the bridges within the United States have the potential for being impacted by seasonal 

freezing with 33,000 of those being located in high seismic regions.  This number of 

structures could easily be increased with the inclusion of buildings and the respective 
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foundations located within these regions.  Researchers have performed studies to identify the 

change in key stress-strain parameters such as concrete compressive strength, Poisson’s ratio 

and modulus of elasticity at cold temperatures.  Studies by Sehnal et al. (1983) and Lee et al. 

(1988) found that the unconfined concrete compressive strength would increase by up to 35% 

at -40 °C (-40 °F).  Lee et al (1983) found that Poisson’s ratio would increase in unconfined 

concrete by as much as 50% at -70 °C (-94 °F) in normal strength concrete.  These studies, 

however, have focused on the behavior of unconfined concrete for use in cryogenic 

applications or the bond behavior between reinforcing steel and unconfined concrete.  

Extension of such studies to the confined concrete region of a structure should be 

investigated to ensure the desired ductile behavior of the structural system especially in a 

seismic situation.  Therefore, an experimental study was undertaken to identify the changes 

in the stress-strain behavior of confined concrete with varying levels of horizontal and 

longitudinal reinforcement between 20°C (68°F) and -40°C (-40°F) in a controlled 

temperature environment. 

5.3 Research Significance 

Recent research has found that the effects of cold temperature significantly alter the 

seismic performance of concrete bridge columns supported on drilled shaft foundations 

(Suleiman et al. 2006, Sritharan et al. 2007, Shelman et al. 2011, and Wotherspoon et al. 

2009 & 2010).  The performance of such systems starts at the section and material level 

where one must be able to define the moment-curvature response with due consideration to 

temperatyre effects.  Current knowledge on unconfined concrete at cold temperatures needs 
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to be expanded to the confined concrete region as the next logical step.  This paper presents 

an experimental investigation into the behavior of confined concrete at cold temperatures and 

comparisons to a commonly used constitutive model.  

5.4 Experimental Investigation 

As part of a larger study at Iowa State University (ISU) examining the impacts of cold 

temperatures on seismic behavior of deep foundations, the material behavior of A706 

reinforcing steel (Levings and Sritharan 2012), soil (Shelman et al. 2011) and concrete were 

tested at cold temperatures for establishing a consistent data set.  This paper discusses the 

experimental testing of confined concrete at cold temperatures using 101.6 mm (4 in.) and 

76.2 mm (3 in.) diameter cylinders with horizontal volumetric reinforcement ratios ranging 

from unconfined to full encasement in a steel shell (~1.3% horizontal reinforcement ratio) for 

temperatures between 20°C (68°F) and -40°C (-40°F).  This investigation was accomplished 

through the use of two different concrete mix designs with specified concrete strengths from 

27.6 MPa (4 ksi) to 55.2 MPa (8 ksi) to represent the expected concrete strengths prevalent in 

structures.  For each reinforcement ratio and desired testing temperature, three specimens 

were tested under monotonic loading as was consistent with literature on confined concrete 

testing used in seismic design [Mander et al. (1988)].  Loading rate was selected as 1 

mm/min (0.05 in/min) which corresponds to the procedures of ASTM C 39/C 39M (2003) 

and was similar to the testing rate of Lee et al. (1988) at 1.8 mm/min (0.07 in/min).  The 

remainder of this section describes the materials selection, testing matrix, specimen 

construction and testing setup used as part of the study. 
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5.4.1 Materials 

The concrete selected for this study was specified to have unconfined compressive 

strengths of 27.6 MPa (4 ksi) and 55.2 MPa (8 ksi) to capture strengths expected in bridge 

structures.  Batch properties of the final mix designs including strength, slump, air content 

and temperature at time of batching are provided in Table 5-1 based on the field testing 

procedures established by ACI for a Grade I Technician. 

The small scale testing of confined cylinders required the use of 3.8 mm (0.15 in.) 

diameter smooth steel wire with a yield strength of 413.7 MPa (60 ksi) as transverse 

reinforcement.  The difference in strength between Grade 60 reinforcing steel, yield strength 

of 413.7MPa (60 ksi), and the steel reinforcing in the experiment was accounted for by 

adjusting the spacing of the horizontal confinement reinforcing steel as discussed in the 

specimen construction portion of this paper.  The steel shell reinforcement used for a number 

of samples was made of a 0.381 mm (0.015 in.) shim stock with a yield strength of 248.2 

MPa (36 ksi). 

5.4.2 Testing Matrix 

Based on the desired testing temperatures and concrete mix designs, a testing plan was 

constructed to capture the cold temperature behavior of confined concrete as shown in Table 

2.  The experiment focused on cylinders with a concrete compressive strength of 27.6 MPa (4 

ksi) as the reference since this compressive strength represents a common concrete strength 

specified in design throughout the United States.  The remaining concrete mixes were used to 

verify whether or not similar trends existed for different concrete strengths.   
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The specified level of the horizontal volumetric reinforcement ratio was taken as 0, 

0.006, 0.009, 0.012 and steel shell (with an equivalent ratio of 0.013) based on the expected 

level of reinforcement in high seismic regions throughout the United States.  The unconfined 

concrete specimens were used to establish the baseline concrete compressive strength at each 

testing temperature for use in the analytical comparisons of the confined specimens. 

5.4.3 Specimen Construction 

Using the information in Table 5-2, the confined and unconfined concrete samples were 

constructed to create the desired testing specimen as provided in Figure 5-1.  For the spirally 

reinforced and unreinforced concrete specimens, the forms were made of plastic cylinder 

molds of 101.6 mm by 203.2 mm (4 in. by 8 in.) for the 27.6 MPa (4 ksi) concrete mix.  In 

addition, 76.2 mm by 152.4 mm (3 in. by 6 in.) cylinder molds were used for the 55.2 MPa (8 

ksi) unconfined and spirally reinforced concrete samples based on the capacity of the testing 

apparatus.  Each mold then had spiral reinforcement inserted with the spacing determined 

such that the amount of horizontal reinforcement ratio would be the equivalent of a concrete 

cylinder confined by Grade 60 deformed reinforcing bar.  After placement of the spiral 

reinforcement, two horizontal bars placed in an ubonded state were placed through the mold 

so that gauges could be placed for measuring vertical strain over the middle third of the 

specimen to capture the stress-strain behavior.  Additionally, a thermocouple was placed 

within the center of each specimen to ensure the entire sample was at the desired testing 

temperature. 
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In addition to the plastic molds, a number of steel shell cylinder molds were constructed 

for testing purposes.  To ensure the shell would act as lateral confinement only, the shell 

height was intentionally cut 6.3 mm (0.25 in.) short overall to allow for compression of the 

concrete cylinder without applying direct load to the steel shell.  The next step was to create 

the remainder of the mold by removing the top and bottom of a plastic cylinder and attaching 

them to the shell such that the appropriate height of concrete was obtained for testing.  

Furthermore, the horizontal rods and thermocouples needed for measurements during testing 

were inserted into the final concrete cylinder. 

Concrete was placed at local concrete batch plants within the molds using three lifts per 

mold and consolidation through rodding and tapping procedures dictated in the appropriate 

field testing guidelines.  The specimens were then covered and allowed to cure for one day 

prior to transporting the specimens back to the structures laboratory at ISU.  Once at the lab, 

the specimens were field cured by leaving them in the molds for 28 days and covering them 

with a thin layer of water and plastic wrap to lock in the moisture at the top of the concrete 

specimens.  After the full cure time of 28 days had elapsed, the specimens were removed 

from the molds, capped using high strength sulfur and stored in the lab until testing was 

possible. 

5.4.4 Testing Procedures 

After curing, capping and pre-freezing as needed to reduce testing time, specimens were 

taken to the testing apparatus at the time of testing.  The loading frame consisted of an MTS 

uniaxial testing frame and an environmental chamber as depicted in Figure 5-2.  The 
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environmental chamber uses pressurized liquid nitrogen to cool the interior of the chamber to 

the testing temperature and maintain the level for the specified cylinder.  To test a specimen 

within this chamber, two extensions were designed and milled at ISU to extend from the 

wedge grips into the center of the chamber and safely obtain the maximum compressive 

capacity of the loading frame of 489.3 kN (110 kips).  Compression platens were then 

attached to the end of the rods to apply the compressive force. 

The remaining component needed for testing purposes was the instrumentation setup for 

each cylinder as shown in Figure 5-3.  This consisted of a displacement gauge on either side 

of the cylinder, attached to the top bar of horizontal thread rods, to measure the change in 

length experienced in the center of the specimen due to compression loading, determining a 

vertical strain for the concrete specimen to go along with the frames load cell measuring the 

applied compressive force.  A thermocouple was placed at the center of the specimen prior to 

placement of the concrete to provide confidence that the entire specimen had reached the 

desired testing temperature.  The laterally confined specimens using spiral reinforcement or 

external steel shells had two strain gauges placed on opposite sides of the cylinder to measure 

the hoop strain developed from the steel resisting the dilation of the concrete.  Two additional 

displacement gauges were placed along the plane perpendicular to that of the thread rods and 

measured the vertical strain over the entire height of the specimen.  The multiple 

displacement gauges produced corresponding data until significant cracking caused the 

thread rod gauges to deviate and not adequately capture the softening of the concrete.    

Loading Protocols 
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The loading of the multiple concrete specimens was performed using a monotonic 

procedure as initial testing at Iowa State University (Thiemann 2009) indicated that the peak 

behavior of a cyclic test could be sufficiently captured using monotonic means.  Monotonic 

testing began by seating the specimen within the testing apparatus.  After this stage, the 

machine automatically applied compressive force to the specimen using the specified loading 

rate until raching one of the following states: (1) the ultimate capacity of the testing 

apparatus [490 kN (110 kip)]; (2) complete failure of the unconfined specimen; (3) failure of 

the lateral reinforcement, or; (4) an additional head displacement of 12.7 mm (0.5 in.) was 

reached without failure.  The last value was selected, as this would correspond to an 

approximate confined compressive strain of 0.06 which exceeds strains typically used in 

seismic design.  In addition, the axial stress being maintained at this level is typically below 

40% of the maximum stress experienced by the specimen at the peak load.  At this point, the 

specimen was unloaded and removed from the environmental chamber so that another 

specimen could be instrumented and tested, Figure 5-4. 

5.5 Analytical Investigation 

In seismic design, the satisfactory behavior of the confined concrete is important to 

establish a satisfactory level of ductility in a structural system.  The model suggested by 

Mander et al. (1988) and discussed in Priestley et al. (1996) is commonly used to establish 

the stress-strain response of confined concrete, Figure 5-5.  This model establishes the 

behavior of the concrete using the unconfined concrete properties for strength along with the 

effectiveness of the confining reinforcement to define the behavior, Eq. (5-1) through Eq. (5-
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4).  For a logical comparison as part of the experimental study, it was important to determine 

whether or not the approach discussed in Priestley et al. (1996) would sufficiently capture the 

response indicated within the experimental investigation at cold temperatures.   

  fc= fcc
 
 x r (r-1 xr)⁄            Eq. (5-1) 

  fcc
 
=fc

 (2.254√1 7.94fl
 
fc
 ⁄ - 2fl

 
fc
 ⁄ -1.254)        Eq. (5-2) 

   cc= co[1 5(fcc
 

fc
 ⁄ -1)]          Eq. (5-3) 

  r =Ec (Ec-Esec)⁄            Eq. (5-4) 

5.6 Experimental Results and Discussion 

5.6.1 Unconfined Concrete 

The results of the unconfined concrete testing undertaken as part of the experimental 

investigation are presented first to help define the expected behavior of the confined concrete 

specimens.  According to the information presented in Eqns. (5-1) through (5-4), the most 

important behavior to understand with decreasing temperature was (1) the unconfined 

concrete compressive strength, f′c; (2) the strain at the unconfined compressive strength, co, 

and; (3) the modulus of elasticity, Ec. 

The first parameter investigated was the unconfined concrete compressive strength.  

Based on the work of previous researchers (Sehnal et al. 1983 and 1988), the concrete 

compressive strength was compared to the strength at a room temperature of 20°C (68°F).  
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This comparison was accomplished by analyzing the strength gain factor (SGF) which was 

defined as the strength at the specified testing temperature divided by the average strength of 

three cylinders tested at the reference temperature.  Figure 5-6 provides a comparison of the 

strength gain factor for an individual mix design and specimens discussed in Table 5-2 along 

with previous research.  Figure 5-7 compares the average of the multiple mix designs tested 

as part of the experimental investigation with the inclusion of previous research for normal 

strength concrete materials only.  Figure 5-7 data indicates an increasing trend in concrete 

compressive strength as temperature decreases between the upper and lower temperature 

testing range.  Using the Lee et al. (1988a) data set along with the experimental data because 

of the similar water to cement ratio, a linear trend was established for the SGF as a function 

of temperature that accounts for the change in unconfined compressive strength of concrete 

at cold temperatures, Eq. (5-5).  Although the tested cylinders ranged from a 76.2 mm (3 in.) 

to 101.6 mm (4 in.) diameter, the relative increase between the cold temperature and the 

room temperature specimens was consistent and size effects were deemed insignificant when 

related to cold temperature impacts. 

  SGF= fc
 
fc,20
 ⁄ = - 0.0047 T °C     1.094       Eq. (5-5a) 

  SGF= fc
 
fc,68
 ⁄ = - 0.0026 T °F     1.177       Eq. (5-5b) 

Similar to the unconfined compressive strength experimental results, the variation in 

strain at the unconfined compressive strength with decreasing temperature was compared.  
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As expected, the experimental data indicated a decreasing trend with the change in 

temperature for the multiple concrete mix designs investigated as part of this study. 

   co,20=6.9E-06 T °C   1.86E-03                   Eq. (5-6a) 

   co,68 = 3.8E-06 T °F     1.74E-03        Eq. (5-6b)  

The third component investigated for the unconfined concrete specimens was the 

modulus of elasticity as this is typically assumed to be constant between confined and 

unconfined concrete.  Figure 5-8 provides a comparison of the cold temperature modulus of 

elasticity by comparing to the average modulus of elasticity in the unfrozen state with 

removal of data points that exceed the 20% threshold.  The relationship indicates that the 

value is related to the square root of Eqns. (5-5a) and (5-5b) as stated in Eq. (5-7).  This 

relationship is in line with the common definition of modulus being a function of the square 

root of the unconfined compressive strength of the concrete (ACI 2008).  Additionally, the 

confined concrete modulus was found to equal the unconfined concrete modulus at each 

respective testing temperature which was consistent with the theory for warm weather 

conditions (Priestley et al. 1996) 

  RVModulus=√SGF           Eq. (5-7) 

5.6.2 Confined Concrete 

Using the relationships established for the unconfined concrete strengths, the analytical 

investigation was now used to compare the experimental data with the expected behavior of 
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the confined concrete by modifying the appropriate material properties in Eqns. (5-1) to (5-

4).  Material properties were modified in the analytical equations by taking the unconfined 

compressive strength established from the experimental testing of unconfined concrete and 

maintaining the strain at the compressive strength of 0.002.  The first term analyzed using 

this technique was the confined concrete compressive strength for different levels of 

reinforcement.  The experimental and analytical data are compared graphically in Figure 5-9 

where the experimental data demonstrated a consistently lower trend than the expected 

confined concrete strength based on changes in unconfined concrete material behavior.  

Additionally, the low confinement ratio of 0.61% studied as part of this investigation 

behaved similar to unconfined concrete and was most likely due to the large spacing used on 

a small cylinder sample.  The fully encased steel shell specimens consistently reached the 

capacity of the testing apparatus; thus, the data will not be provided for the remaining data 

sets. 

The decrease in confinement effects with cold temperature can be contributed to the 

increase in Poisson’s ratio with decreasing temperature as found by Lee et al. (1988).  The 

researchers found that Poisson’s ratio would increase between 25% and 45% at a temperature 

of -60°C (-76°F) when compared with testing at 20°C (68°F).  The increase in Poisson’s ratio 

would cause the confined concrete specimens to dilate quicker, thus reducing the 

effectiveness of the confining steel reinforcement.  This suggests that the amount of 

reinforcement in a confined concrete region must be increased at cold temperatures to ensure 

the desired performance of the structure. 
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A comparison of the cold and warm temperature confined concrete compressive strength 

found that the amount of horizontal confinement reinforcement was independent of the 

amount of increase as a function of temperature, Figure 5-10.  Thus, the amount of strength 

gain associated with the confined concrete strength with decreasing temperature can be 

related according to Eq. (5-8). 

            = fc 
 

fc ,20
 ⁄ = - 0.00166 T °C     1.0332      Eq. (5-8a) 

            = fc 
 

fc ,68
 ⁄ = - 0.00092 T °F     1.          Eq. (5-8b) 

The next point analyzed in the data set was the strain and the confined concrete 

compressive strength as this point typically defines the change from strengthening to 

softening within an analytically developed stress-strain curve.  The data, Figure 5-11, 

indicated that the strain at the peak confined concrete strength would increase linearly 

between 0% to 40% over the temperature testing range for this study.  This was contrary to 

the analytical model suggested by Mander et al. (1988), in which a decreasing trend would be 

expected based on simple modifications to unconfined concrete material properties.  

Capturing the change in strain at the peak confined concrete compressive strength is possible 

using Eq. (5-9) with the strain at the reference temperature of 20°C (68°F) computed 

according to Mander et al. (1988) or an appropriate confined concrete methodology. 
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                 ⁄   -                            Eq. (5-9a) 

                 ⁄   -                            Eq. (5-9b) 

The ultimate strain of the confined concrete section was investigated with temperature as 

this point establishes the one of the ultimate limit state curvatures that would define the 

plastic behavior in a system.  For this experiment, the ultimate concrete strain was defined as 

the first occurrence of fracture within the horizontal spiral reinforcement.  The data indicated 

that the ultimate concrete strain was unaffected by temperature, Figure 5-12.  Figure 5-12c 

shows that a minimal increase may be present with temperature, but this could be due to test 

specimens that did not result in adequate data for the ultimate concrete strain.  Thus, the 

warm weather ultimate strain specified by a designer can be applied to cold temperatures up 

to -40°C (-40°F). 

5.7 Conclusions 

This paper discussed an experimental investigation into the behavior of confined concrete 

at cold temperatures on small scale specimens.  The testing program provided data necessary 

for modifying the stress-strain curves that establish the behavior of confined concrete for use 

in structural design based on the equations presented herein based on the assumption that the 

starting strength is based on the start of an individual freezing cycle.  These modifications 

were specified based on the specific property being analyzed including the concrete 

compressive strength, strain at peak compressive strength, modulus of elasticity and ultimate 
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concrete strain.  The following conclusions were drawn from this study based on the 

experimental testing at cold temperatures: 

 The unconfined concrete compressive strength of concrete increased an average of 

28% when temperature decreased from 20 °C (68 °F) to -40 °C (-40 °F).   

 The concrete strain at the peak of the unconfined concrete curve (co) was found to be 

approximately 0.002 at 20 °C (68 °F).  This value will decrease in a linear manner by 

approximately 23% as the temperature decreases to -40 °C (-40 °F).   

 The modulus of elasticity for unconfined concrete (Ec) was found to increase by 13%, 

based on a square root relationship to compressive strength, as temperature decreased 

to -40°C (-40°F) from 20°C (68°F).  Furthermore, the confined concrete modulus of 

elasticity was the same as the unconfined concrete modulus of elasticity. 

  Similar to the unconfined compressive stress, the confined concrete compressive 

stress (f′cc) was found to increase as temperature decreased from 20°C (68°F) to -

40°C (-40°F).  Additionally, the rate of increase in f′cc was determined to be affected 

by the increase in Poisson’s ratio of the concrete specimen as temperature decreases.  

The changing Poisson’s ratio decreased the effectiveness of the confinement thus 

reducing the overall strength gain possible.  However, additional steel added to the 

specimen will increase the ductility of the confined region as it does during a warm 

weather condition. 

 In contrast to the unconfined concrete, the strain at the peak confined compressive 

strength increased between 0% and 40%, depending on the amount of horizontal 



www.manaraa.com

192 

 

 

 

reinforcement present in the specimen, as temperature went from 20°C (68°F) to -

40°C (-40°F).   

 The modification of material properties alone in Mander’s model will not adequately 

capture the behavior of confined concrete subjected to seasonal freezing as shown in 

Figure 5-9.  The confined concrete curve must therefore be established through 

modification of the key parameters using its own relationships. 

 The ultimate confined compressive strain was found to not be affected by decreasing 

temperature and recommended that the cold temperature value be the same as the 

warm temperature value. 
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5.9 Notations 

ACI  = American Concrete Institute 

ADOT&PF = Alaska Department of Transportation and Public Facilities 

AUTC = Alaska University Transportation Center 

°C  = degrees Centigrade 
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°F  = degrees Fahrenheit 

Ec  = concrete modulus of elasticity 

Esec  = secant modulus of elasticity to the confined concrete compressive strength 

RVModulus = reference value for the modulus of elasticity (Ec,cold/Average Ec,unfrozen) 

RVcc = reference value for the confined concrete strain (cc /cc,unfrozen)  

RVconfined = reference value for the confined concrete strength (f′cc/ f′cc,unfrozen) 

SGF = strength gain factor for unconfined concrete compressive strength 

(f′c,cold/Average f′c,unfrozen) 

T  = temperature with the units specified in the parentheses 

fc  = concrete compressive stress at the specified concrete strain 

f′c  = unconfined concrete compressive strength 

f′c,20 (f′c,68) = unconfined concrete compressive strength at the unfrozen state of 20°C 

(68°F) 

f′cc  = confined concrete compressive strength 

f′l  = effective lateral confining stress based on the horizontal volumetric 

reinforcing steel ratio and yield strength of steel 

x  = ratio of specified strain to strain at the confined concrete compressive 

strength 

r  = coefficient to define the shape of the concrete stress-strain curve 

cc  = strain at the confined concrete compressive strength 
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cc,20 (cc,68) = strain at the confined concrete compressive strength at the unfrozen state of 

20°C (68°F) 

co  = strain at the unconfined concrete compressive strength, typically taken as 

0.002 according to Priestley et al. (1996) 

co,20 (co,68) = strain at the unconfined concrete compressive strength at the unfrozen state 

of 20°C (68°F) 

s  = horizontal volumetric reinforcing steel ratio 
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Table 5-1: Batch Properties of Concrete Mix Designs 

Mix ID Trial 1 Trial 2 

Specified f′c [MPa] ([ksi]) 27.6 (4) 55.2 (8) 

Mix Temperature [°C] ([°F]) 21.1 (69.9) 21.7 (71) 

Slump [cm] ([in.]) 3.8 (1.5) 20.3 (8) 

Air Content 3.50% 4.40% 

Measured f′c [MPa] ([ksi]) 37.1 (5.38) 54.5 (7.91) 

w/c ratio 0.26 0.31 
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Table 5-2: Original test matrix for the experimental investigation of concrete cylinders 

Specified 

Mix Design 

f′c 

[MPa] ([ksi]) 

Grade 60 

Horizontal 

Volumetric Ratio, 

s 

No. of 

Samples 

Temperature 

[°C] ([°F]) 

Trial 1 27.6 (4) 

Unconfined 12 

20 (68), -1 (30.2), 

-20 (-4), -40 (-40) 

0.006 12 

0.009 12 

0.012 12 

Steel Shell 12 

Trial 2 55.2 (8) 

Unconfined 6 

-1 (30.2), -20 (-4) 0.009 6 

Steel Shell 6 

Total 96  
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Figure 5-1: Typical details of specimens used for testing of confined and unconfined 

concrete 
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Figure 5-2: Loading frame setup for testing of cylindrical concrete specimens in an 

environmental chamber: (a) front schematic view; (b) actual view of testing 

apparatus 
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Figure 5-3: Concrete experimental instrumentation setup (a) original; (b) modified 
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Figure 5-4: A set of specimens after testing to ultimate limit state   
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Figure 5-5: Terminology associated with stress-strain response of confined and 

unconfined concrete 
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Figure 5-6: SGF for the Trial 1 (4 ksi) concrete mix as a function of cold temperature 

with comparison to previous research 
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Figure 5-7: SGF of unconfined concrete at cold temperatures including multiple mix 

designs 
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Figure 5-8: Influence of cold temperature on the unconfined modulus of elasticity 
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Figure 5-9: Change in confined concrete strength at cold temperatures compared to 

expected behavior and the behavior of unconfined concrete 
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Figure 5-10: Confined concrete strength ratio deviation with temperature 
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Figure 5-11: Comparison of strain at the confined concrete compressive strength 
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Figure 5-12: Ultimate concrete strain for the confined concrete specimens 
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CHAPTER 6:  EXAMINATION OF METHODS USED FOR ESTABLISHING               

TRANSVERSE CONFINEMENT REINFORCEMENT FOR BRIDGE COLUMNS 

A modified version of a paper to be submitted to a conference related to concrete or earthquake 

engineering 

 

Aaron T. Shelman
9
 and Sri Sritharan

10 

 

6.1 Abstract 

Ductile behavior is an important aspect for the design of structures subjected to lateral 

loading from events such as earthquakes.  Attaining ductile behavior relies on the establishment 

of adequate amounts of transverse confinement reinforcement in critical regions.  Numerous 

design authorities have specified different approaches, but such approaches vary in the required 

amount by factors as high as two or three.  A recent study at Iowa State University investigated 

these differences and their impacts on the seismic design of structures.  After demonstrating the 

differences in a few of the different approaches, the impacts to the seismic design of bridge 

structures is presented based on computer simulations using a fiber-based analysis under static 

and dynamic loading with emphasis on curvature and displacement ductility demands. 

                                                 
9
 Primary Researcher and Author, Research Assistant at Iowa State University, Department of Civil, Construction 

and Environmental Engineering, Ames, Iowa 50011 

10
 Wilson Engineering Professor at Iowa State University, Department of Civil, Construction and Environmental 

Engineering, Ames, Iowa 50011 
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6.2 Introduction 

The design of structures in regions of high seismicity typically relies on meeting 

performance-based design requirements such as (1) fully operational; (2) operational; (3) life 

safety, and; (4) near collapse (Priestley 2000).  These performance-based design requirements 

and past history of earthquake damage has led to the design of structures that respond in a ductile 

manner without collapse from undesirable failure modes.  In the design of reinforced concrete 

bridge columns, this process is normally achieved through the establishment of plastic hinge 

regions that have sufficient transverse confinement reinforcement to achieve the desired level of 

displacement ductility.  Structural damage in recent earthquakes, such as shown in Figure 6-1, 

however, has demonstrated that the current design methods employed to ensure an adequate 

response still have room for improvement.  This paper summarizes the results of a recent study at 

Iowa State University that examined several current methods available to design engineers for 

the establishment of transverse confinement reinforcement and how they impact the ductile 

design of reinforced concrete bridge columns.   

6.3  Currently Available Methods 

Over the years various design authorities have specified the quantity of transverse 

reinforcement needed in a design in the form of the volumetric ratio of transverse steel to 

concrete area, which defines the required cross-sectional area within a given spacing and/or the 

required level of displacement ductility.  These recommendations range from constant values to 

multi-variable equations that take into account some combination of terms related to section 

geometry, material properties, applied loads, reinforcement detailing and section performance.  

This section provides additional detail as to some of the current methods available for use by 
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design engineers without the inclusion of approaches suggested purely for design of shear 

reinforcement. 

6.3.1 American Association of State and Highway Transportation Officials (2012) 

Throughout the United States, the design of bridge structures is typically conducted 

according to the requirements of the LRFD Bridge Design Specifications (AASHTO 2012).  

According to these standards, the design of transverse reinforced concrete bridge columns must 

meet two different equations.  The first of these equations, Eq. (6-1) was developed to ensure 

that the core of the cross-section maintains axial load capacity without the presence of the cover 

concrete associated with the gross area.   

   
y

'

cchgs ff1AA0.45ρ         Eq. (6-1) 

  where: Ag     = gross area of concrete 

Ach  = core area of concrete measured to outside edge of reinforcement 

'

cf  = unconfined compressive strength of concrete 

fy = yield strength of transverse confinement reinforcement 

The second equation, Eq. (6-2), was specified such that an adequate flexural curvature 

capacity in yielding regions would be attained, thus establishing a sufficient curvature ductility. 

  y

'

cs ff0.12ρ          Eq. (6-2) 

  where: '

cf      = unconfined compressive strength of concrete 

fy = yield strength of transverse confinement reinforcement 
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6.3.2 Priestley et al. (1996) 

In this approach, the design of the transverse confinement reinforcement was recommended 

to be designed in accordance with Eq. (6-3), which was based on the work of the ATC-32 project 

for the seismic design of bridges in the state of California.  This particular equation takes into 

account the amount of longitudinal reinforcement in the section, the applied loads within the 

system and the material properties used in the design.  The authors furthered this approach by 

stating that a certain amount of reinforcement should be provided to prevent buckling of the 

longitudinal bars.  Additionally, this approach recommends applying Eq. (6-1) for columns less 

than three feet in diameter. 

     0.01ρ0.13)A1.25P/(f0.5ff0.16ρ lg

'

cy

'

cs      Eq. (6-3) 

  where: Ag     = gross area of concrete 

P  = axial load on the cross-section 

'

cf  = unconfined compressive strength of concrete 

fy = yield strength of transverse confinement reinforcement 

l = volumetric ratio of longitudinal reinforcement 

6.3.3 New Zealand Concrete Structures Design 

Similar to the United States, New Zealand maintains its own specifications, NZS 3101 

(2008), for the design of concrete structures.  In ductile regions of the structure, the 

recommendations specify the use of Eq. (6-4) for the design of transverse confinement 

reinforcement.  Eq. (6-4) is a modified form of an earlier equation published by the New Zealand 

group that took into account the curvature ductility of the system.  The earlier equation stated 
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that for ductile regions at the bottom of a story a curvature ductility of 20 could be specified, 

while a curvature ductility of 10 could be used in limited ductile regions.  Thus, Eq. (6-4) is 

believed to have indirectly included the desired curvature ductility of the system.   

  0.0084)AφffA(2.4Nfm)Ap(1.3ρ g

'

cytc

*'

cgts      Eq. (6-4)      

 where: Ag     = gross area of column; 

Ac  = core area of column; 

pt  = Ast/Ag; 

Ast  = total area of longitudinal column reinforcement; 

m  = )(0.85ff '

cy ; 

fy  = lower characteristic yield strength of longitudinal steel; 

fyt  = lower characteristic yield strength of transverse steel; 

*N    = axial compressive load on column; and 

φ  = strength reduction factor = 0.85 for columns not protected by  

     capacity design. 

Overall, Eq. (6-4) takes into account numerous factors, but upon closer inspection the design 

will not be controlled by this equation until the axial load ratio exceeds thirty percent (Park 

1996).  Thus, requirements to ensure buckling of the longitudinal reinforcing bar does not take 

place were also included in this design guideline and typically control the overall design. 
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6.3.4 Guide Specifications for LRFD Seismic Bridge Design (AASHTO 2010) and 

California Department of Transportation (Caltrans) Seismic Design Criteria (2010) 

Although numerous guidelines provide specific equations that designers must meet for the 

design of transverse confinement reinforcement, the more recent shift towards a performance-

based design has resulted in methodologies that provide requirements for the desired behavior of 

the system.  AASHTO Seismic (2010) and the Seismic Design Criteria (SDC) published by 

Caltrans (2010) have adopted this approach by specifying that the amount of transverse 

confinement reinforcement should be provided such that a certain displacement ductility is 

attained.  Within the SDC, the intent commonly associated with guidelines of this nature is such 

that a designer shall perform a pushover analysis on the global structural system and ensure that 

the prescribed displacement ductility level is satisfied (Shelman and Sritharan 2013).  The 

specific level of displacement ductility depends on the type of bridge column being designed 

(e.g., a single column bent versus a multi-column bent); however, each individual component 

must satisfy a minimum displacement ductility level of three.  Although not stated explicitly in 

the SDC, the conservatism built into the confinement equation is generally expected to provide a 

minimum displacement ductility level of four or greater for the local components of a structural 

system. 

6.4 Impact of Available Equations 

Understanding the differences in the above equations requires an examination of the data 

with respect to the section geometry, applied loads, concrete material properties and amount of 

longitudinal reinforcement.  Comparison that have been conducted in this study related to these 

characteristics have indicated that the amount of transverse confinement reinforcement specified 
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for use within a bridge column could vary by a factor of two to three times depending on the 

equations examined.  Furthermore, constant, linear and curvilinear trends were present within the 

data sets dependent on the approach and characteristic examined.  As an example of a few of the 

results, Figure 6-2 provides the comparison for the influence of unconfined concrete compressive 

strength and the influence of the axial load ratio.  These two comparisons indicate that Eq. (6-1) 

through Eq. (6-3) typically result in the highest amounts of transverse confinement reinforcement 

that would be needed for a given design.  The exact methodology that would control the design, 

however, would vary depending on the characteristic variable being examined.  The differences 

can be seen in the axial load ratio comparison (Figure 6-2b) where Eq. (6-3) exceeded the other 

two equations between a five and ten percent axial load ratio.  It is important to note that axial 

load ratios between a tension value of five percent to a compression value of fifteen percent 

could be experienced in an exterior column of a multi-bent bridge design, thus suggesting the 

importance of the axial load ratio in the establishment of the transverse confinement 

reinforcement.  Based on the high variability within the data sets and the fact that different 

approaches would control the design, the characteristics investigated within this study should be 

included in any future approach that defines the amount of transverse confinement 

reinforcement. This included the materials used in the cross-section, the applied axial loads, the 

amount of longitudinal reinforcement and the ratio of the gross concrete to the core concrete area 

of the cross-section. 

6.4.1 Curvature Ductility 

Although a comparison of the different equations and the amount of reinforcement that 

should be provided is critical, a better comparison for the seismic design of a reinforced concrete 
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bridge column is the study of the curvature ductility capacity.  Such a study was completed, 

consisting of modeling a series of circular concrete bridge column sections in OpenSEES (2012) 

for a moment-curvature analysis using a fiber-based zero length element.  The comparison 

consisted of columns with cross-section diameters ranging from 12 in. to 96 in., an axial load 

ratio of -5% to 15% and a longitudinal reinforcement ratio of 1% to 5%, using #11 bars or a size 

such that a minimum of 8 bars existed in the cross-section.  The concrete material model, 

concrete07 (developed by the Iowa State Research Team for use in OpenSEES), was specified to 

have properties established using the recommendations of Priestley et al. (1996) for confined and 

unconfined concrete, with an unconfined concrete compressive strength of 4 ksi.  The increase in 

the concrete compressive strength for the confined region was accounted for using the amount of 

transverse confinement according to Eq. (6-1), Eq. (6-2) or Eq. (6-3), since these provided the 

greatest amounts of transverse confinement reinforcement.  The steel material model, steel02, 

was selected, utilizing a yield strength of 66 ksi longitudinally and a 2% secondary slope to 

capture strain hardening.  Prior to completing the analysis, the OpenSEES model was verified 

using multiple commonly-used programs that perform a moment-curvature analysis (Shelman 

and Sritharan 2013). 

The results of the analyses are provided in Figure 6-3 through Figure 6-5.  Figure 6-3 

provides the results of the analyses using Eq. (6-3).  This figure indicates that the curvature 

ductility experiences a polynomial decrease and asymptotically approaches a singular value as 

the amount of longitudinal steel increased.  Furthermore, the amount of decrease was a function 

of the axial load ratio and the diameter of the cross-section.   
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Similar trends were noted within Figure 6-4, which provides the impact of Eq. (6-2) on the 

curvature ductility capacity, established to ensure an adequate flexural curvature capacity.  The 

results of the Eq. (6-2) comparison, however, resulted in a lower curvature ductility capacity than 

Eq. (6-3) as the amount of longitudinal reinforcement increased.  Additionally, an examination of 

the data at a 2% longitudinal reinforcement ratio indicated that the curvature ductility ranges 

from 13 to 25 using Eq. (6-2) whereas Eq. (6-3) ranges from 14 to 21. 

Figure 6-5 provides a comparison of the curvature ductility capacity using Eq. (6-1) to 

establish the amount of transverse confinement reinforcement.  This particular equation results in 

a large variation in the overall capacity of the section in a seismic design process.  This figure 

indicates the curvature ductility would vary from a value of 5 up to 25 based on the column 

diameter, where the cover concrete signifcantly alters the curvature ductility depending on 

column size, and the applied axial load within the system. 

Regardless of the approach used, the amount of transverse confinement reinforcement 

typically resulted in a curvature ductility capacity less than 20.  This specific value was 

suggested for use in ductile regions according to the design approach of New Zealand (1994).  

Furthermore, Eq. (6-3) typically resulted in the highest level of curvature ductility; thus, the data 

would provide the highest level of displacement ductility. 

6.4.2 Displacement Ductility 

The moment-curvature analyses using Eq. (6-3) were extended to a series of pushover and 

dynamic analyses.  Eq. (6-3) was the approach investigated based on the fact that the highest 

level of curvature ductility capacity was typically attained with this approach.  The pushover 

analyses were performed on a cantilever style column using values for the aspect ratio (ratio of 
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column length above the foundation to the column diameter) that varied from three to ten.  The 

results of the static part of the analysis indicated that current equation-based approaches which 

account for strain penetration satisfactorily captured the global response (Shelman and Sritharan 

2013).  Furthermore, the data indicated that the selected equation resulted in a displacement 

ductility greater than 5.5 for all aspect ratios investigated, as shown in Figure 6-6.  This level of 

displacement ductility was well suited to the requirements of the SDC (2010) and AASHTO 

(2010) guidelines, which have the intent of performing a pushover analysis to ideally ensure that 

the displacement ductility capacity exceeds a level of four to five. 

Although the pushover analysis requirements of the guidelines were adequately met, a 

dynamic analysis was performed in OpenSEES (2012) to investigate the adequacy of the 

pushover analyses in determining the lateral behavior of the system.  Three different unscaled 

earthquake records from the Imperial Valley (1940), Loma Prieta (1989) and Northridge (1994) 

events were applied in separate analyses for the dynamic portion of the investigation.  These 

records were chosen to represent different magnitudes of ground acceleration as well as 

significant events in the design of bridge structures for seismic situations.  Spectral acceleration 

charts of the 5% damped records are provided in Figure 6-7 along with two typical design 

spectrums provided by the SDC (Caltrans 2010) for a Type D soil.  The bridge columns were 

specified to have a dynamic mass such that natural periods of 0.5 sec, 1.0 sec, 1.5 sec and 2.0 sec 

would exist prior to application of ground shaking.  Viscous damping in the system was 

conservatively selected to be 3% of critical, based on information available in Chopra (2007), 

and applied to the tangent stiffness matrix per available literature [e.g., Priestley and Grant 

2004]. 
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The dynamic analyses resulted in both elastic and inelastic responses depending on the 

column aspect ratio, period of the structure and intensity of the applied ground motion.  An 

example of one set of these analyses is provided in Figure 6-8 for the Northridge event, which 

has been identified as producing earthquake records with a velocity pulse.  This particular event 

resulted in the capacity of the section being exceeded at low aspect ratios of 3 to 4.  It is worth 

noting, however, that some regions ensure that the bridge column design must have an aspect 

ratio greater than or equal to an aspect ratio of 4.  Although the data suggests that a satisfactory 

design at column aspect ratios greater than 4 is being achieved, these records do not take into 

account recent earthquakes such as the 2011 Great East Japan Earthquake (Tohoku), which had 

large ground accelerations and an associated high intensity.  Furthermore, upon closer inspection 

of the data set, it can be concluded that a bridge column designed with the exact same level of 

reinforcement and natural period could experience a demand greater than the capacity as 

indicated by the higher levels of inelastic deformation occurring with the 2.0 sec period systems.  

This is more prevalent in the curvature ductility demand data set depicted in Figure 6-9 for the 

Northridge event. 

This data, when combined with the comparison of reinforcement equations, suggests that a 

constant level of ductility may not be appropriate for all design cases.  In this study, it was 

observed that the displacement ductility demand exceeded capacity for the low aspect ratios; 

thus, it may be more appropriate to account for the expected demand to be seen within the sytem.  

Although the demand level is hard to specify, additional analyses could provide a reasonable 

approach that takes into account the column aspect ratio as well as the magnitude and intensity of 

the design level event. 
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6.5 Conclusions 

A brief summary on the work performed by the research team at Iowa State University into 

the design of transverse confinement reinforcement was provided within this paper.  This 

summary consisted of a brief discussion on the current approaches available to design engineers 

for the establishment of transverse confinement as well as their impacts on the seismic design of 

reinforced concrete bridge columns.  Based on this information, the following conclusions were 

drawn: 

1. Existing methodologies require different amounts of confinement reinforcement in the 

critical plastic hinge regions.  The transverse confinement reinforcement amount required 

by current methods can vary by a factor as high as 2 to 3 times the smallest value. 

2. The equation as established by ATC-32 (1996) for Caltrans and presented in Priestley et 

al. (1996) along with the requirements of AASHTO (2012) fall in the upper range of the 

confinement reinforcement requirements provided by the different approaches.  To 

provide a better design equation, the establishment of a target curvature demand as a 

function of column geometry, axial load ratio, longitudinal reinforcement, and column 

aspect ratio is suggested to formulate a more dependable s requirement. 

3. To further examine the impact of the confinement equations, a s value was established 

using the Priestley et al. (1996) approach which takes into account material properties 

and some initial section designs.  Using this approach, a series of additional conclusions 

were drawn and are as follows: 

a. Current confinement equations provide sufficient amounts of reinforcement to 

meet the intended design procedure of SDC (2010) and AASHTO (2010) for a 
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minimum displacement ductility of 3 and the preferred displacement ductility 

level of 4 or greater.  However, the demand on the analyzed system exceeds 

column capacity based on a pushover analysis at column aspect ratios between 3 

and 4.   

b. Aspect ratios greater than 4 for the specific column analyzed may experience a 

lateral earthquake demand greater than the column capacity under a larger 

magnitude or more intense earthquake event.  This possibility along with the 

dependency of curvature and displacement ductility demands on aspect ratio 

indicates the need to consider a demand level displacement or curvature ductility 

level in the design of transverse confinement reinforcement. 

c. Based on the dynamic analyses, it was found that a constant value of displacement 

ductility may not be appropriate for all column designs and should take into 

account the events being considered in the design process.  This was indicated in 

the data based on the decreasing curvilinear trend that developed in the 

displacement ductility (Figure 6-8) as a function of earthquake demand, column 

aspect ratio and natural period of the structure being analyzed. 
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Figure 6-1: Nakasone Viaduct after the 2011 Great East Japan Earthquake (Kawashima et 

al. 2011) 
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(a) Concrete Compressive Strength

 
(b) Axial Load Ratio 

Figure 6-2: Example comparison of transverse confinement reinforcement requirements for 

the concrete compressive strength and axial load ratio [after Shelman and 

Sritharan 2013] 
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Figure 6-3: Curvature ductility capacity of bridge columns using Eq. (6-3) 
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Figure 6-4: Curvature ductility capacity of bridge columns using Eq. (6-2) 
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Figure 6-5: Curvature ductility capacity of bridge columns using Eq. (6-1) 
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Figure 6-6: Displacement ductility capacity of bridge columns using Eq. (6-3) 
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Figure 6-7: 5% damped spectral acceleration curves for selected earthquake records with 

two design curves 
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Figure 6-8: Comparison of the displacement ductility capacity and demand obtained from 

dynamic analyses of bridge columns subjected to the Northridge Earthquake 

record 
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Figure 6-9: Comparison of the curvature ductility capacity and demand obtained from 

dynamic analyses of bridge columns subjected to the Northridge Earthquake 

record 
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CHAPTER 7:   SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 

7.1 Introduction 

Research presented herein on the seismic design of reinforced concrete bridge columns 

was motivated by the desire to take a proactive approach at advancing current design 

procedures.  The objectives of this research were to: (1) construct a simplified model that is 

consistent with a previously developed model by the Iowa State University research team for 

the design of columns continuously supported on drilled shaft foundation; (2) improve the 

understanding of material behavior of soil and concrete for areas that may experience 

seasonal freezing; and (3) examine the impacts of current design methodologies for the 

establishment of transverse confinement reinforcement.  The sections presented below 

provide a summary of the completed work, conclusions drawn from the multiple projects and 

recommendations developed throughout the process. 

7.2 Summary 

The research presented within this series of investigations started with a general 

introduction on the recent history of major seismic events throughout the world and their 

impact on current infrastructure.  This transitioned towards the history of seismic design 

within the United States and its evolution over the decades.  Based on the idea of using a 

proactive approach, areas for improvement within the current state of practice were discussed 

including the impact of transverse confinement reinforcement, soil-foundation-structure-

interaction and seasonal temperature effects.  The scope of research for this document was 

discussed with respect to the multiple experimental and analytical investigations to be 

undertaken and presented as a series of journal and conference papers. 
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An extensive literature review was completed with the goal of providing additional 

information on advancing the seismic design of reinforced concrete bridge columns that 

could not be provided in the selected form for this document.  The first portion examined was 

the variation within design equations and methodologies for the establishment of transverse 

confinement reinforcement.  This was followed by a discussion on the influence of SFSI on 

the seismic design of bridge columns with the impacts of seasonal freezing on its overall 

response.  This process included an examination on the broad impacts of temperature 

variation on the infrastructure within the United States and Japan.  Due to the drastic changes 

in behavior associated with seasonal freezing, a study on the current knowledge base 

associated with material behavior of soil and concrete at freezing temperatures was 

conducted to highlight possible areas of improvement and further demonstrate the need for 

inclusion of temperature effects in routine design. 

A simplified model for determining the lateral response of drilled shafts in non-cohesive 

soils was developed to create a consistent approach with the one discussed in Appendix A.  

The proposed methodology consisted of a cantilever supported on a flexible base such that 

the effective height was from the column tip to the point of maximum moment.  Properties of 

the system and the three springs were established using a series of simple equations.  These 

equations allow for the establishment of a bilinear force-displacement curve representing the 

lateral load response of the system with limit states defined at the first occurrence of yielding 

in the longitudinal steel reinforcement and the ultimate flexural failure of the cross-section.  
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The accuracy of the method was verified against experimental data from Chai and 

Hutchinson (2002) and detailed analyses performed in LPILE. 

The next topic tackled was the material behavior of soil at freezing temperatures.  This 

was performed using an experimental investigation on five soil types expected to be 

encountered near bridge locations throughout the United States.  Testing was performed at 

three different temperatures in an unconsolidated and undrained manner using a specially 

designed triaxial testing apparatus in New York City.  Preliminary recommendations for 

adjusting material properties and their impacts on the seismic design of bridge columns 

continuously supported on drilled shaft foundations were included. 

Improvement of the overall design process was then extended to the behavior of confined 

concrete at subzero temperatures.  This was performed using an experimental investigation 

on multiple confined concrete specimens using three mix designs, five levels of 

reinforcement and four different levels of subzero temperatures.  Preliminary trends were 

presented for the impacts of temperature on the mechanical properties of confined and 

unconfined concrete that could be used in the design of reinforced concrete in high seismic 

regions.  Additional information was provided to indicate the need to improve theoretical 

design models used for defining the confined concrete behavior; thus improving the 

understanding of curvature and displacement ductility for seismic design of reinforced 

concrete bridge columns. 

Assuming the temperature effects could be adequately addressed, it was important to 

ensure that enough transverse confinement reinforcement was being provided to attain the 



www.manaraa.com

237 

 

 

 

desired ductile response.  The requirements associated with different standards and 

recommendations for the establishment of transverse confinement reinforcement in the 

critical plastic hinge region were investigated.  After highlighting the large variation in the 

requirements, a brief discussion on the impacts of the highest levels of provided 

reinforcement were investigated using pushover and dynamic analyses. 

7.3 Conclusions 

Based on the information attained from the multiple studies within this document, the 

following conclusions were drawn: 

 Recent earthquakes have indicated that there is still room for improvement within the 

current seismic design of reinforced concrete bridges.  SFSI and seasonal freezing 

were found to highly influence the overall lateral load response as indicated by 

researchers such as Chai (2002), Sritharan et al. (2007) and Wotherspoon et al. 

(2010). 

 A new simplified method was developed for the establishment of the lateral load 

response of bridge columns continuously supported on drilled shaft foundations using 

a series of equations.  The method was constructed to be consistent with the approach 

described in Appendix A and adequately verified against the work of Chai and 

Hutchinson (2002). 

 Within the experimental investigation into the behavior of soil subjected to frozen 

temperatures a number of conclusions were produced.  Those conclusions are 

presented below: 
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o The unconfined compressive strength of soil significantly increases with 

colder temperatures.  The multiple soil types tested (Type I through V, 

excluding II) typically had the strength ratio increase by a factor of 10 at -1°C 

(30.2°F) and 100 at -20°C (-4°F). 

o The strain at the unconfined compressive strength decreased by 0.05  

between the upper and lower limit testing temperatures for all soils.  This 

corresponds to a drop in strain of 1.25E-3 /°C (6.5E-4 /°F) as a function of 

temperature for all the soil types tested. 

o The stiffness ratio increased in an exponential manner to an average factor of 

300 at -20°C (-4°F) for Type I through Type V soils, excluding Type II soils. 

o Increasing the moist unit weight of the soil specimens caused an increase in 

the unconfined compressive strength at -20°C (-4°F).  Additionally, the 

increased moisture content caused a higher amount of ice in the void spaces, 

which led to an increased unconfined compressive strength at -20°C (-4°F). 

o The Type II soils tested in this program did not follow the same magnitudes of 

increase for the UCS and soil modulus of elasticity.  In this instance, the UCS 

ratio increased by 140 and 740 at -1°C (30.2°F) and -20°C (-4°F), 

respectively.  The stiffness ratio increased by a factor of 1000 to 1800 at -

20°C (-4°F). 

o Additional testing of Type I soils was performed to examine the influence of 

moist unit weight, moisture content and strain rate.  The increasing trends for 
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the moist unit weight and moisture content tests were as expected based on the 

current understanding of warm weather behavior.  Variation in the rate of 

monotonic loading of the Type I soils between 0.1% and 10% strain per 

minute resulted in an increase of the unconfined compressive strength and 

strain at the associated level.  However, the modulus of elasticity was 

unaffected by strain rate over the testing range. 

o Cyclic loading of the warm and frozen soil specimens produced data trends 

similar to that of the monotonic testing for the strength ratio, stiffness ratio 

and strain at the unconfined compressive strength.  The residual deformation 

of the soil type tested was 93% of the peak strain value at -1°C (30.2°F) and 

80% of the peak strain at -20°C (-4°F).  Additionally, strain rate effects were 

the same as the monotonic specimens at -20°C (-4°F). 

o The influence of frozen soil on the lateral load response of a column 

continuously supported on a CIDH was found to be significant.  The column 

and foundation shear demands increased by 19% to 128%, depending on the 

depth of frozen soil and temperature being examined.  Additionally, the 

critical design location shifted towards the ground surface by over a meter at 

the extreme testing temperature of -20°C (-4°F), emphasizing the importance 

of accounting for seasonal temperature variation. 
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 Within the experimental investigation into the behavior of confined concrete 

subjected to seasonal freezing a number of conclusions were produced.  Those 

conclusions are presented below: 

o The unconfined concrete compressive strength of concrete increased an 

average of 28% when temperature decreased from 20 °C (68 °F) to -40 °C (-40 

°F).   

o The concrete strain at the peak of the unconfined concrete curve (co) was 

found to be approximately 0.002 at 20 °C (68 °F).  This value will decrease in 

a linear manner by approximately 23% as the temperature decreases to -40 °C 

(-40 °F).   

o The modulus of elasticity for unconfined concrete (Ec) was found to increase 

by 13%, based on a square root relationship to compressive strength, as 

temperature decreased to -40°C (-40°F) from 20°C (68°F).  Furthermore, the 

confined concrete modulus of elasticity was the same as the unconfined 

concrete modulus of elasticity. 

o  Similar to the unconfined compressive stress, the confined concrete 

compressive stress (f′cc) was found to increase as temperature decreased from 

20°C (68°F) to -40°C (-40°F).  Additionally, the rate of increase in f′cc was 

determined to be affected by the increase in Poisson’s ratio of the concrete 

specimen as temperature decreases.  The changing Poisson’s ratio decreased 

the effectiveness of the confinement thus reducing the overall strength gain 
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possible.  However, additional steel added to the specimen will increase the 

ductility of the confined region as it does during a warm weather condition. 

o In contrast to the unconfined concrete, the strain at the peak confined 

compressive strength increased between 0% and 40%, depending on the 

amount of horizontal reinforcement present in the specimen, as temperature 

went from 20°C (68°F) to -40°C (-40°F).   

o The modification of material properties alone in Mander’s model (1988) will 

not adequately capture the behavior of confined concrete subjected to seasonal 

freezing as shown in Figure 5-8.  The confined concrete curve must therefore 

be established through modification of the key parameters using its own 

relationships. 

o The ultimate confined compressive strain was found to not be affected by 

decreasing temperature and recommended that the cold temperature value be 

the same as the warm temperature value. 

 Within the analytical study on the requirements of transverse confinement 

reinforcement and its impacts on the seismic design of reinforced concrete bridge 

columns resulted in a number of conclusions.  A large variation was noted in the 

different requirements and the final conclusions are provided below:  

o The equation as established by ATC-32 (1996) for Caltrans and presented in 

Priestley et al. (1996) along with the requirements of AASHTO (2012) fall in 

the upper range of the confinement reinforcement requirements provided by 
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the different approaches.  To provide a better design equation, the 

establishment of a target curvature demand as a function of column geometry, 

axial load ratio, longitudinal reinforcement, and column aspect ratio is 

suggested to formulate a more dependable s requirement. 

o To further examine the impact of the confinement equations, a s value was 

established using the Priestley et al. (1996) approach which takes into account 

material properties and some initial section designs.  Using this approach, a 

series of additional conclusions were drawn and are as follows: 

 Current confinement equations provide sufficient amounts of 

reinforcement to meet the intended design procedure of SDC (2010) 

and AASHTO (2010) for a minimum displacement ductility of 3 and 

the preferred displacement ductility level of 5.  However, the demand 

on the analyzed system exceeds column capacity based on a pushover 

analysis at column aspect ratios between 3 and 4.   

 Aspect ratios greater than 4 for the specific column analyzed may 

experience a demand greater than the column capacity under a larger 

magnitude or more intense earthquake event.  This possibility indicates 

the need to consider a demand level displacement or curvature 

ductility level in the design of transverse confinement reinforcement. 

 Based on the dynamic analyses, it was found that a constant value of 

displacement ductility may not be appropriate for all column designs 
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and should take into account the events being considered in the design 

process.  This was indicated in the data based on the decreasing 

curvilinear trend that developed in the displacement ductility (Figure 

6-8) as a function of earthquake demand, column aspect ratio and 

natural period of the structure being analyzed. 

7.4 Recommendations 

A number of recommendations towards the seismic design of reinforced concrete bridge 

columns were presented within this series of papers and are as follows: 

 The influence of frozen temperatures on the behavior of soil can be addressed using 

the equations presented within Chapter 4.  When using these equations, it is assumed 

that the design engineer has established an appropriate starting strength by taking into 

account the influence of freezing and thawing, in-situ strength, possible degradation 

from cyclic loading, etc. 

 The influence of frozen temperatures on the behavior of confined and unconfined 

concrete can be addressed using the equations presented within Chapter 5.  When 

using these equations, it is assumed that the design engineer has established an 

appropriate starting strength by taking into account the influence of freezing and 

thawing, possible degradation from chemicals, etc. 

 Simplified models were developed that can be applied to the design of columns 

continuously supported on drilled shaft foundations in cohesive and non-cohesive 
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soils.  The proposed models are recommended to improve current practice as they 

provide both the lateral displacement and force response with a single model.  

7.5 Future Research 

Throughout the studies within this project a number of different topics were addressed 

including: (1) the development of a new simplified method for the lateral load response of 

columns continuously supported on drilled shafts in non-cohesive soils; (2) the influence of 

seasonal freezing on the behavior of confined and unconfined concrete; (3) the impacts of 

seasonal freezing on the behavior of five soil types expected to be encountered near bridge 

sites throughout the United States; and (4) the variation and impacts of current design 

methodologies for transverse confinement reinforcement to the seismic design of reinforced 

concrete bridge columns.  During this process, a number areas were identified for future 

areas of research and further refinement of the studies presented within this series of papers.  

The recommendations are as follows: 

 The use of a tri-linear curve in determining the lateral response could be investigated 

to more accurately capture the shear demands experienced by a column supported 

continuously supported on a drilled shaft foundation. 

 Alternative materials, such as steel and ultra-high performance concrete, should be 

investigated to expand on the capabilities of the improved model in capturing the 

lateral loading response. 

 Additional testing on the behavior of soil at frozen temperatures for use in the seismic 

design of bridge columns could be completed.  This should include triaxial testing to 
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identify variations in the friction angle of sand soils as well as additional tests to 

produce a larger data set using multiple soils and temperatures. 

 Additional testing on the behavior of confined concrete at frozen temperatures could 

be completed to populate a larger data set and construct a theoretical model for use in 

frozen conditions.  This data set should take into account potential size effect 

concerns as well as the presence of longitudinal reinforcement in the cross-section. 

 A new equation for the establishment of transverse reinforcement could be developed 

that takes into account the expected demand from an earthquake event as well as axial 

load ratio, the amount of longitudinal reinforcement, material properties and the ratio 

of the gross to core concrete cross-sectional area.  This would help to improve the 

efficiency of the design process. 

 The impacts of a dynamic versus a pushover analysis should be further investigated to 

ensure that all effects are sufficiently captured during the design process. 
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 A RATIONAL MODEL FOR CHARACTERIZING THE MONOTONIC APPENDIX A:

LATERAL RESPONSE OF DRILLED SHAFTS IN COHESIVE SOILS 

A paper to be submitted to the American Society of Civil Engineers (ASCE) Journal of 

Structural Engineering 

Aaron Shelman
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 and Sri Sritharan
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A.1: Abstract 

The influence of soil on a foundation subjected to lateral loading impacts the behavior of 

both the foundation and the column to which it is typically connected.  This paper examines the 

current state of practice for accounting for characterizing the column-shaft-soil system using 

simplified means and proposes a new rational model with improved capabilities.  The proposed 

model is aimed to establish a bilinear response for the overall behavior of the system using a set 

of three springs to create a flexible base for the column at the maximum moment location.  

Spring properties and overall length of the new system are based on a series of simple equations 

that allow the response to be computed quickly by hand.  Additional features of the model 

include: (1) the ability to estimate ultimate shear demand and its associated location, and; (2) the 

ability to account for the effects of seasonal temperature variations.  Verification, both analytical 
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and experimental, of the model is provided, demonstrating adequacy of the model in representing 

the columns supported on drilled shaft foundations in cohesive soils. 

CE Database Keywords:  Foundations; Seismic design; Soil-Structure Interaction; Models; 

Concrete; Cold Temperature; Cohesive Soil 

A.2: Introduction 

Lateral loading on structures (e.g., wind and seismicity) requires the design of their 

foundations to resist overturning and prevent collapse.  In regions of high seismicity, a common 

bridge design practice is the use of columns continued directly into the ground as drilled shaft 

foundations due to reduction of construction costs.  The effects of soil-foundation-structure-

interaction (SFSI), however, increase the difficulty of characterizing the monotonic lateral 

response of column-shaft systems as equilibrium must be maintained between soil and 

foundation at all points while taking into account the nonlinear behavior of soil and reinforced 

concrete.  Establishing the monotonic behavior is further complicated by the effects of seasonally 

frozen temperatures where critical locations shift upwards, drastically increasing force demands 

[Suleiman et al. 2006; Sritharan et al. 2007; Wotherspoon et al. 2009 and 2010].  Detailed 

approaches to solving this interaction commonly use computationally heavy techniques such as 

finite element programs or Winkler soil springs to model every aspect of the system.  Simplified 

models are constructed to reduce the computation time while minimizing the necessary amount 

of input information to ensure that the displacements at the column top are in agreement with the 

SFSI system built in the field.  This paper describes a rational model for characterizing the 

monotonic lateral response of drilled shafts through the use of a flexible foundation.  
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A.3: Current Design Models 

Current practices for the lateral design of drilled shafts employ pushover analyses to ensure 

that capacity exceeds demand for a design-level event.  Pushover analyses are commonly 

employed using the Winkler spring approach to get the typical behavior depicted in Figure A-1.  

Programs such as LPILE (Reese et al. 2004) are used in current practice to produce such results; 

however, they are used to solely perform the lateral design of a pile foundation or drilled shaft. 

This approach or even more refined finite element methods may produce inaccurate results due 

to not accurately modeling both nonlinear soil behavior and moment-curvature response of the 

foundation shaft, especially in the critical region.  Another drawback to this approach for 

accounting for SFSI is that the results are not easily integrated into a global analysis of the full 

structural system to capture the realistic response.  Incorporation of the effects of SFSI into such 

global analyses commonly employ simplified methodologies that define an equivalent fixed 

based cantilever system for a column supported by a drilled shaft [e.g., Priestley et al. (1996, 

2007); Chai (2002)].  Such a fixed based cantilever requires two separate models to realistically 

capture both the force and displacement resistance associated with the inclusion of SFSI. 

A.3.1: Guide Specifications for LRFD Seismic Bridge Design (AASHTO 2010) 

Multiple methods are presented in the guidelines and commentary for determining the lateral 

response of deep foundations based on site location, bridge design and importance.  The simple 

method discussed in the main portion of the specification models the bridge column by extending 

the above ground column into the ground to an equivalent point of fixity within the soil using 

empirical means and eliminating the presence of soil.  The goal of this approach is to match the 

stiffness of the cantilever such that the displacement at the top of the column corresponds to the 
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displacement with the presence of soil.  This method relies on a ratio of the pile’s flexural 

rigidity and the soil’s modulus of elasticity and applies only when the system behaves in a linear 

elastic manner.  The commentary of AASHTO (2010) suggests additional simple approaches, 

Chai (2002) and Priestley et al. (2007), in lieu of the point of fixity method if the systems are 

believed to not behave in a linear elastic manner, which is the case in most seismic design 

situations.  

A.3.2: Chai (2002) 

Chai’s model relies on the use of two points, the point of fixity and the maximum moment, to 

adequately define the flexural strength and ductility of the system with the assumption that the 

stiffness of the second slope is zero for the force-displacement response.  The fixity and 

maximum moment location were developed by relating soil models such as Poulos and Davis 

(1980) and Broms (1964) to an equivalent cantilever system.  These locations define the flexural 

strength and ductility of the system based on an idealized elasto-plastic moment-curvature 

response of the cross section, thus ignoring the strain hardening associated with steel and 

concrete.  The plastic rotation of the system was assumed to be concentrated at the maximum 

moment location with an analytical plastic hinge length determined based off of four full-scale 

columns supported on drilled shafts tested in a uniform cohesionless soil (Chai and Hutchinson 

2002). 

A.3.3: Priestley et al. (2007) 

For a bridge column supported by a drilled shaft, a method for determining the design 

displacement of the system based off of the work of Suarez and Kowalsky (2007) is provided.  

The method determines the design displacement using a series of nomographs or equations to 
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locate the in-ground plastic hinge location and a coefficient that accounts for the boundary 

conditions at the column tip and the type of soil surrounding the foundation shaft.  Plastic action 

within the in-ground plastic hinge is accounted for based on the recommendations of Chai 

(2002).  Lateral shear demand is found by approximating the viscous damping of the system due 

to the elastic and hysteretic damping and then relating to a predetermined spectral displacement 

and acceleration curve to find a stiffness of the system.  The application of this method is 

restricted to drilled shafts in soils for undrained shear strengths, cu, between 20 kPa (420 psf) and 

40 kPa (840 psf). 

A.4: Challenges 

Although some models are in existence, challenges associated with their use in the lateral 

design of a drilled shaft subjected to a design-level or greater earthquake exist.  Advancements in 

the simplified models can be made to better define the behavior of a continuous column/shaft 

system over the entire loading range on both a global and local level.  A recent study (Shelman et 

al. 2010) found the following shortcomings with the existing SFSI design models: 

1) The maximum moment location must be adequately identified to ensure an adequate 

ductile design for all conditions.  Elastic approaches tend to define the maximum moment 

to occur at the point of fixity used for the individual model although the maximum 

moment is typically above this location as shown in Figure A-1.  

2) Both the elastic and inelastic response of materials must be adequately captured as drilled 

shafts may experience plastic deformation due to a design-level or greater event.  The 

inelastic range must consider the nonlinearity of soil, concrete and steel as these 

parameters largely influence the overall lateral load behavior of the SFSI system. 
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3) An analytical plastic hinge length established based off of experimental or analytical 

techniques in cohesive soils should be used instead of methods established in non-

cohesive soils.  Drilled shafts in cohesive soils typically experience a longer plastic hinge 

length since cohesionless soils are generally stiffer, limiting the inelasticity over a smaller 

shaft length. 

4) A large range in soil parameters should be accommodated as cohesive soil varies from 

soft to stiff with the upper range of cu being closer to 400 kPa (8350 psf) – a tenfold 

increase beyond that used for developing some existing models. 

5) Use of one model to capture strength and another to obtain displacement should be 

avoided as this approach will not allow the simplified method to be incorporated into 

finite element models used for bridge analysis. 

6) Given the significant impacts of seasonally cold temperatures on SFSI, inclusion of the 

standard variations in design temperature range that the structure and soil experience over 

the specified lifetime would be desirable in the development of suitable SFSI models. 

A.5: Proposed Rational Method 

Upon assessment of the needed advancements, a new equation based method was constructed 

to define the local and global lateral load response of a column supported on a drilled shaft using 

an equivalent cantilever system by addressing all of the aforementioned concerns.  The rational 

method established uniquely captures the realistic response through the development of an 

equivalent cantilever with a flexible foundation that identifies the critical design locations as well 

as capturing the ground movement associated with the shaft deformation.  A set of three springs 

are used to define the effects of soil on the foundation shaft.  Two of the springs, one rotational 
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and one translational, are located at the point of maximum moment to capture the rotation and 

translation of the overall system (see Figure A-1), which corresponds to the critical location for 

damage and plastic deformation.  The rotational spring (i.e., 3 in Figure A-2) accounts for the 

elastic shaft rotation below the maximum moment location as well as the plastic action in the 

shaft above and below the maximum moment location.  The translational spring at the flexible 

base (i.e., 2 in Figure A-2) models the translational movement of the shaft from below the 

maximum moment location.  The second translational spring (i.e., 1 in Figure A-2) represents the 

resistance of the soil between the ground surface and the maximum moment location.  Although 

springs are used in the model, simple equations relying on the compatibility of the structure at 

certain limit states (i.e., first yield and ultimate) can be used to define a global force-

displacement response over the elastic and inelastic loading range.  The springs improve the 

method’s versatility through the use of a structural analysis program capable of handling 

nonlinear spring behavior. 

A.6: Formulation of Model 

Based on the model provided in Figure A-2, a number of key parameters for a base model 

were established using the following variables: (1) a uniform layer of cohesive soil; (2) 

undrained shear strength, cu, between 48.3 kPa (7 psi) and 380 kPa (55 psi); (3) axial load ratio 

of five percent; (4) circular column and shaft diameter of 0.6 m (2 ft); (5) longitudinal 

reinforcement ratio of two percent; (6) transverse spiral reinforcement specified to ensure 

flexural failure of the shaft; (7) column above the ground between 0D and 10D, where D is the 

diameter of the shaft; and, (8) foundation shaft long enough to ensure complete fixity and beam 

behavior.  Using a series of analytical models constructed in LPILE Plus v 5.0 (Reese et al. 
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2004) with accurate representation of material nonlinearity and identifying trends within the 

resulting data sets appropriate equations for the parameters of the proposed method were 

established.  A more detailed description of the establishment of equations can be found in the 

work of Shelman et al. (2010). 

A.6.1: Maximum Moment Location 

The maximum moment location, the most critical region where plastic strains are expected to 

develop in the shaft, defines the effective height of the cantilever model supported on a flexible 

base and locates the rotational and translational spring.  Based on the results of the pushover 

analyses, provided in Figure 3, the non-dimensional maximum moment location (Lma/D) varied 

in a quadratic manner as a function of the above ground column aspect ratio.  Normalization of 

the data with respect to the column diameter was performed to expand the methods range of 

applicability.  Furthermore, the data indicated that the coefficients of the quadratic trends would 

be a function of cu as noted by the stacking of the lines where a softer soil is expected to have a 

larger depth to the point of maximum moment.  The maximum moment location can be found 

using Eq. (A-1), where ma, ma and ma are coefficients calculated based off of the soils 

undrained shear strength with a comparison between the equation and analytical data set 

provided in Figure 3. 

  Lma=D [ ma (
Lcol

D
)
2

  
ma

(
Lcol

D
)  

ma
]             Eq. (A- 1) 

  where,   ma=-0.000005 a cu
2 0.0003 b cu 0.028 

                       

 
ma
= 1.28 ln cu psi   7.1307= 1.28 ln cu kPa   9.6021 
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a = 1.0 for psi and 0.021 for kPa 

b = 1.0 for psi and 0.145 for kPa 

A.6.2: Zero Moment Location 

The next point determined in the model identifies the point on the expected moment profile 

where zero moment first occurs below the maximum moment location and the lateral 

displacement in the foundation shaft at this point has nearly been dissipated.  This point defines 

the translation, elastic rotation and plastic rotation occurring at the maximum moment location 

due to movement below this point.  The pushover data in Figure A-3 led to the non-dimensional 

zero moment location (Lm0/D) being a power series relation based on the undrained shear 

strength of the soil and the above ground column aspect ratio.  The zero moment location can be 

found using Eq. (A-2), where m0 and m0 are coefficients based on the above ground height of 

the column with a comparison between the equation and analytical data provided in Figure A-3. 

  Lm0=D  m0 cu psi  
 m0  or Lm0=D  m0 0.145 cu kPa  

 m0          Eq. (A- 2) 

  where,          (
    

 
)       

 
m0
=0.021 (

Lcol

D
)  0.33 

A.6.3: Translational Spring at Maximum Moment Location 

At the maximum moment location, the drilled shaft experiences lateral deformation, as 

depicted in Figure 1, due to development of shear and moment below the maximum moment 

location.  Due to the presence of a flexible base in the equivalent cantilever model, the properties 

of a bilinear spring in the lateral translational direction (i.e., 2 in Figure A-2) can be constructed 
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to account for this movement.  From the pushover analyses, it was found that a linear 

relationship between the non-dimensional translation (t/D) and the non-dimensional distance 

between the maximum moment and zero moment location (Lmb/D) would be sufficient.  The 

translation at the ultimate condition can be found using Eq. (A-3) while the translation at the first 

yielding of the steel is found using Eq. (A-4), where  is a correction factor used only if cu is less 

than ~70 kPa (10 psi); otherwise the value is input as 1.  Spring forces are computed using 

equilibrium of a free-body diagram associated with the proposed cantilever system at the 

ultimate and first yield limit states. 

   tu=D [0.0255 (
Lmb

D
) -0.0652]             Eq. (A- 3) 

  where,  =0.0157 (
Lcol

D
)  0.9342 

      
   

    
                Eq. (A- 4) 

A.6.4: Rotational Spring at Maximum Moment Location 

The amount of elastic rotation within the bilinear spring at the ultimate and first yield limit 

states were found to be linearly related to Lmb/D.  To account for the plastic action within the 

system, an analytical plastic hinge length, Lp, relating the section curvature to the total plastic 

rotation, p, was established as a function of Lmb/D.  Eqs. (A-5) to (A-8) establish the rotational 

aspects of the bilinear spring at the ultimate limit state based on flexural failure of the cross-

section.  At the first yield limit state, the elastic rotation component is defined using Eq. (A-9).  

The moment value for each of the limit states is taken as the ultimate and first yield moments of 

the foundation shaft within the expected plastic region produced from a moment-curvature 
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analysis that adequately addresses material behavior through all seasons (e.g., see Shelman et al. 

2010 and Levings and Sritharan 2012). 

   ebu=0.0031 (
Lmb

D
)  0.0006              Eq. (A- 5) 

                              Eq. (A- 6) 

   p= pLp=( u- e)Lp               Eq. (A- 7) 

                            Eq. (A- 8)  

   y= eby=0.002 (
Lmb

D
) 0.00001             Eq. (A- 9) 

A.6.5: Translational Spring representing Soil 

This translational spring specified as a single spring halfway between the maximum moment 

location and the ground surface can be modeled as multiple springs to produce a more accurate 

soil model.  The soil spring improves the rational methods ability to handle P- effects that arise 

from large deformations as well as the impacts associated with seasonal freezing.  The p-y curve 

for the soil spring is found using the procedures suggested by Reese et al. (1975) with 

adjustments for the soil material behavior as discussed in Shelman et al. (2010). 

When a hand calculation is desired for establishing the tip lateral load and displacement, the 

ultimate soil pressure, pu, is computed and then multiplied by the effective height of the spring, h 

(h = Lma - Lcol for a single spring), to determine the resistance of the soil at the ultimate limit 

state, Vsu.  A similar process is needed at the first yield limit state, but calibration of the pushover 

data sets found that a coefficient , Eq. (A-10), could adjust the ultimate limit state to the first 

yield limit state as a function of the undrained shear strength of the soil (Shelman et al. 2010) by 

multiplying the soil resistance at the ultimate limit state by the coefficient . 
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   =-0.03 ln cu psi   0.7536 or  =-0.03 ln cu kPa   0.8115       Eq. (A- 10) 

A.6.6: Force-Displacement Response at Tip 

The global force-displacement bilinear response envelope can be found by summing the 

following individual components: (1) the total elastic displacement of the sytem, e; the total 

plastic displacement, p; and (3) the initial translation at the maximum moment location, t.  The 

total elastic displacement accounts for the elastic rotation below the maximum moment location, 

eb, and the elastic displacement above the maximum moment location, ea, due to the cantilever 

action produced from loading applied at the column tip.  The initial translation at the maximum 

moment location is found using Eq. (A-3) or (A-4) depending on the limit state that is being 

analyzed.  The plastic displacement is due to the plastic rotation, p, concentrated at the 

maximum moment location.  The final equation, Eq. (A-11), requires iteration on the tip elastic 

displacement, ea, to account for the P- effects present in the overall system.  The force at the 

column top, Vtop, is found at each limit state using a summation of moments about the flexible 

base accounting for the P- effects. 

                                   Eq. (A- 11) 

  where,             

      
       

 

    
 

           

         or      
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A.7: Maximum Shear Calculations 

Although the maximum moment location and top lateral force has been effectively 

established, the maximum shear does not typically occur within this region but rather deeper into 

the soil.  Two methods were established as part of the rational model to adequately define the 

maximum shear and its location.  Both methods establish the point of maximum shear, Eq. (A-

12), by relating to the maximum moment and a ratio of the column clear height and diameter that 

is greater than 2.  If it is less than 2, the maximum shear typically occurs at the column tip.   

         [      (
    

 
)      ]            Eq. (A- 12) 

The first method computes the maximum shear based on the soil causing a distributed 

loading on the foundation shaft between the maximum moment and maximum shear locations as 

shown in Figure A-4. The loading is approximately parabolic in shape with a zero slope at the 

point of maximum moment and an ordinate value of the ultimate soil pressure.  In this method, 

the shear at the maximum moment location is taken to be a value of zero - as expected from 

general beam theory - and the maximum shear is then calculated as (pu)(Lvu-Lma), where  

defined in Eq. (A-13) is a coefficient that better defines the shape of the distributed load based on 

the strength of the soil.  The  value computed by Eq. (A-13) approximately varies between 0.5 

and 0.9, corresponding to a shape somewhere between a linear relationship and a cubic 

relationship.  Alternatively, Eq. (A-14) may be used to conservatively compute the maximum 

shear associated with the distributed loading of soil along the foundation shaft. 
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                      or                                 Eq. (A- 13) 

         [         (
    

 
)]             Eq. (A- 14) 

A.8:  Influence of Additional Parameters 

In addition to the parameters used to establish the base model, a number of other properties 

influence the lateral load response in a pushover style analysis.  Extension of the model to 

account for some of these parameters included an examination of the axial load ratio and the 

amount of longitudinal reinforcement within the shaft cross-section.  

A.8.1: Axial Load Ratio (ALR) 

Although not expected to highly impact the results of the model, the impact of axial load 

ratio was investigated by varying the ALR between 0% and 10%.  The results of the comparison 

are provided in Figure A-5 where the influence of ALR was compared with the main parameters 

of Lma and Lm0 that are used to construct the majority of the final model.  Data indicated that the 

variation in ALR would alter these two parameters between 0.2% and 2.5% depending on the 

aboveground column height and applied axial load.  Based on the results of this comparison it 

was concluded that the model does not need to be adjusted for the axial load ratio, thus 

expanding the applicability of the model to a column and shaft system with an ALR between 0% 

and 10%. 

A.8.2: Longitudinal Reinforcement Ratio 

The impact of the amount of longitudinal reinforcement within a column and shaft cross-

section was examined by varying the volumetric ratio of steel to concrete between 1% and 4%.  

Figure A-6 indicates that both the normalized maximum moment and zero moment locations are 
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influenced by the amount of longitudinal reinforcement in the system with the maximum 

moment location experiencing a larger variation in the data.  Within the model, the normalized 

locations can be corrected for the presence of different amounts of longitudinal reinforcement by 

taking the original equations and multiplying them by a factor determined from the information 

provided in Figure A-6.  The factor applied to the maximum moment location shall be a factor of 

the aboveground column height to ensure that the length of soil influence does not overtake the 

P- effects within the free-body diagram of the system at the first yield and ultimate limit states.  

The variation within the normalized zero moment location was such that a constant based on the 

amount of longitudinal reinforcement alone could be applied to Eq. (A-2).  This constant, using 

Eq. (A-15), ranges from 0.9 at 1% longitudinal reinforcement to 1.15 at 4% longitudinal 

reinforcement.  Furthermore, the ultimate shear estimation should be modified with Eq. (A-15) 

and the same approach technique stated for the adjustment of the normalized zero moment 

location. 

                                    Eq. (A- 15) 

  where,     = volumetric ratio of longitudinal reinforcing steel to gross-concrete 

A.9: Verification of Proposed Method 

Model verification was performed using data from full-scale testing of CIDH shafts in 

cohesive style soils [Suleiman et al. (2006) and Stewart et al. (2007)] and multiple nonlinear 

analyses of column-foundation systems using LPILE Plus v 5.0 (Reese et al. 2004).  This 

included an examination of the global force-displacement response, the maximum moment 

location, the elastic and plastic rotations, the displacement at the maximum moment location, and 
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the location of the zero moment.  The proposed rational model adequately captures the lateral 

response for a wide range of soil undrained shear strengths, column loadings, column/shaft 

diameters and longitudinal reinforcement ratio.   

A.9.1: Experimental Verification – Iowa State University field testing 

At Iowa State University (ISU) a series of full-scale field tests on two identical continuous 

column/foundation systems that closely resembled the base model developed in the paper were 

tested in summer and winter to examine the impacts of seasonal freezing on the lateral load 

response (Suleiman et al. 2006).  Using the structural and geotechnical parameters provided by 

the researchers, the experimental tests and the proposed rational method were compared 

graphically for the column top force-displacement response in Figure A-7 and found to 

adequately capture the overall behavior.  A numerical comparison was conducted with analytical 

models in LPILE (Reese et al. 2004) and the maximum moment location was determined within 

7%, the top lateral force within 5% at the ultimate condition and the ultimate displacement 

within approximately 20%.  Variation in the ultimate displacement generally arose from the 

conservatism within the model used for the determination of the plastic displacement of the 

overall system.  Comparing the warm weather model directly to the experimental data of 

Suleiman et al. (2006), the maximum moment location was located within 10% of the full-scale 

test results.  Furthermore, the yield lateral force was found within 5% and the column tip 

displacement at yield was within 17%, an adequate approximation due to variation in material 

properties and identification of correct displacement from available strain data. 
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A.9.2: Experimental Verification – University of California, Los Angeles (UCLA) 

As part of a project for the California Department of Transportation (Caltrans) researchers at 

the University of California, Los Angeles (UCLA) performed field testing on a 1/3 geometrically 

scaled model of a typical 1.83 m (6 ft) diameter bridge column that continued into the ground as 

a drilled shaft foundation.  The site consisted of a silty clay material with a plasticity index 

between 12 and 15 with 30% - 60% fines, and included a definitive layer of silty sand.  Using the 

information provided by the researchers, the proposed rational method was performed and Figure 

A-8 presents a graphical comparison of the force-displacement response at the column tip.  The 

initial stiffness was in reasonable agreement with the data producing a value  of 4.1 kip/in in the 

rational method compared to 5.1 kip/in for the experimental data.  The global comparison of 

Figure A-8 indicates that the yield force and displacement are reasonably captured as noted by 

the consistent appearance of inelastic behavior.  The comparison, albeit reasonable, has noted 

differences that are mostly due to the large presence of sand and silt at the testing site that causes 

a purely cohesive environment to not exist at all times as specified in the model development.  

The results, however, demonstrate the ability of the model for different types of cohesive soils 

that may be encountered near a bridge site. 

A.9.3: Analytical Comparison – LPILE Results 

Additional analytical comparisons using LPILE (Reese et al. 2004) were conducted as part of 

a sensitivity study to better determine the range of applicability of the proposed new model.  This 

study included the examination of 0.61 m (2 ft), 1.22 m (4 ft) and 1.83m (6 ft) diameter columns 

with varying soil strengths, shaft longitudinal reinforcement ratios, and column heights above 

ground.  Graphical results of a few of the global force-displacement responses are provided in 
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Figure A-9.  The results of the multiple analyses indicated that the base model and its extensions 

would sufficiently capture the critical locations, differences less than 5%, and the local and 

global response, differences less than 15%.  

A.10: Conclusions 

A rational method accounting for the effects of SFSI was presented within this paper that 

improves upon the traditional approaches used for simplifying detailed finite element 

approaches.  The typical approach relies on the use of an equivalent cantilever that matches 

displacement at the tip of the column shaft, but the rational method was developed to capture 

both the force and displacement response.  This was accomplished by constructing an equivalent 

cantilever supported by a flexible foundation at the critical design location for maximum 

moment using an equation based approach.  Verification of the proposed rational method was 

performed against experimental test specimens in a wide range of soils and analytical models 

using varying soil and structural parameters.  Results indicated that critical design locations 

could be captured within 10% while displacements at the first yield and ultimate limit states were 

within 20%.  These verifications ensure the applicability of the model within the following 

parameters:  (1) axial load ratio between zero and ten percent; (2) longitudinal reinforcement 

ratio between one percent and four percent with the horizontal reinforcement ratio designed to 

meet the requirements of the governing standards and experience a flexural failure; (3) the 

column and shaft diameter are between 0.6 m (2 ft) and 1.83 m (6 ft); (4) the column above the 

ground surface can range in length from 0D to 10D, where D is the cross-sectional diameter of 

the pile shaft; and, (5) the undrained shear strength of the soil lies between 48.3 kPa (7 psi) and 

380 kPa (55 psi).  
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Figure A-1: Typical response of a drilled shaft subjected to a lateral force 
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Figure A-2: Proposed new method  
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Figure A-3: Comparison of Equation based methods to analytical LPILE (Reese et al. 2004) 

models (left) maximum moment location; (right) zero moment location [Note: 1 

psi = 6.895 kPa] 
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Figure A-4: Free body diagram for determining the ultimate shear in the foundation shaft 

  

Mmax 

V = 0 

Vmax = pu(Lvu - Lma) 
M @ Vmax 

pu 

Lvu - Lma Approximately 

parabolic in shape 



www.manaraa.com

271 

 

 

 

  

 

Figure A-5: Influence of axial load ratio on the model developed assuming a 5% axial load 

ratio (left) maximum moment location; (right) zero moment location [Note: 1 

psi = 6.895 kPa] 
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Figure A-6: Effects of longitudinal reinforcement on the model (left) maximum moment 

location; (right) zero moment location [Note: 1 psi = 6.895 kPa]  
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Figure A- 7: Graphical comparison of proposed simplified model with experimental testing 

of Suleiman et al. (2006) 
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Figure A-8: Graphical comparison of Stewart et al. (2007) experimental testing with the  

     proposed simplified model 
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Figure A-9:  Graphical comparison of analytical approaches with the rational method for 4 

ft and 6 ft diameter columns and drilled shafts [Note: 1 inch = 2.54 cm and 1 kip 

= 4.448 kN] 

 

0

50

100

150

200

250

300

350

400

450

500

0 20 40 60 80

S
h

ea
r 

F
o

rc
e 

(k
ip

s)
 

Displacement (inches) 

Analytical 1.22 m (4 ft) Diameter
Rational Method 1.22 m (4 ft) Diameter
Analytical 1.83 m (6 ft) Diameter
Rational Method 1.83 m (6 ft) Diameter
Analytical First Yield



www.manaraa.com

276 

 

 

 

 MATLAB AND OPENSEES CODE APPENDIX B:

B.1: Establishment of Input Files for OpenSEES using Matlab 

This portion of Appendix B contains the coding files used in Matlab for establishing the 

input behavior for the moment-curvature, pushover and dynamic analyses conducted using 

OpenSEES. 

B.1.1: Material Section Behavior using Priestley et al. (1996) 

function Priestley(index,colD,cover,rhol,ALR,BarNumLong,fc,fy,Es,Esh,esu,maxK,numIncr,AspectRatio) 

  

% Define areas and cross-sectional dimensions of steel reinforcement based on bar number 

Bar=[3,0.375,0.11;4,0.5,0.2;5,0.625,0.31;6,0.75,0.44;7,0.875,0.60;8,1,0.79; 

    9,1.128,1.00;10,1.270,1.27;11,1.410,1.56;14,1.693,2.25;18,2.257,4]; 

  

% establishing the properties of the longitudinal reinforcing bar 

barindex=find(Bar(1:end)==BarNumLong,1,'first'); 

Abl=Bar(barindex,3); 

dbl=Bar(barindex,2); 

  

%establishing the properties of the horizontal reinforcing bar 

if BarNumLong <= 9 

    BarNumHor=4; 

else 

    BarNumHor=5; 

end 

  

barindexh=find(Bar(1:end)==BarNumHor,1,'first'); 
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Abh=Bar(barindexh,3); 

dbh=Bar(barindexh,2); 

  

% Establish the cross-section dimensions and longitudinal r/f details based on the starting assumption of a #11 bar or  

% smaller longitudinally 

Dc=colD-2*cover+dbh; 

Ag=pi*(colD^2)/4; 

Ac=pi*(Dc^2)/4; 

Asl=rhol*Ag; 

ns1=round(ceil(Asl/Abl)); 

if ns1 >= 8 

    ns=ns1; 

else 

    while ns1 < 8 

        barindex=find(Bar(1:end)==BarNumLong); 

        Abl=Bar(barindex,3); 

        dbl=Bar(barindex,2); 

        ns1=round(ceil(Asl/Abl)); 

        BarNumLong=BarNumLong-1; 

    end 

    ns=ns1; 

    BarNumLong=BarNumLong+1 

    Abl 

    dbl 

    ns 

end 
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%establishing the properties of the horizontal reinforcing bar after adjusting the longitudinal bar if needed 

 

if BarNumLong <= 9 

    BarNumHor=4 

else 

    BarNumHor=5 

end 

  

barindexh=find(Bar(1:end)==BarNumHor,1,'first'); 

Abh=Bar(barindexh,3) 

dbh=Bar(barindexh,2) 

  

% Redefine the column sections based on the adjusted longitudinal bar 

Dc=colD-2*cover+dbh; 

Ag=pi*(colD^2)/4; 

Ac=pi*(Dc^2)/4; 

  

% Going to determine the unconfined concrete properties 

Ec=185000*((fc*1000)^0.375)/1000; 

ec1=((fc*1000)^0.25)/4000; 

ft1=7.5/1000; % Could also look at 7.5*sqrt(fc) 

et1=2*ft1/Ec; 

r1=(fc*1000/750)-1.9; 

xp1=1.23; 

xn1=2.3; 

  

% Specify the steel properties of the system 
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fye=1.1*fy; 

fsu=1.5*fye; 

esh=3.24*(fye/Es); 

Eratio=0.02;  % ratio between the plastic and elastic moduli in model 

  

% Determine the horizontal reinforcement properties of the system 

rhola=ns*Abl/Ag 

rhos=0.16*(fc/fy)*(0.5+1.25*ALR)+0.13*(rhola-0.01); 

  

s=4*Abh/(Dc*rhos); 

  

% Establish the confined concrete properties 

sclear=s-dbh; 

rhocc=ns*Abl/Ac; 

Ke=min(1,(1-0.5*sclear/Dc)/(1-rhocc)); 

flp=Ke*fy*rhos/2; 

fcc=fc*(2.254*sqrt(1+7.94*flp/fc)-2*flp/fc-1.254); 

ecc=0.002*(1+5*(fcc/fc-1)); 

Ecc=185000*((fcc*1000)^0.375)/1000; 

ft2=7.5/1000; % Could also look at 7.5*sqrt(fc) 

et2=2*ft2/Ecc; 

xp2=1.23; 

xn2=20; % This is supposed to be between 20-30 

n2=Ecc*ecc/fcc; 

r2=n2/(n2-1); 

ecu=-1*(0.004+1.4*rhos*fy*esu/fcc); 
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% Want to establish the necessary information for loading and material property definition with the sign convention  

% being (-) for compression and (+) for tension 

P=1*ALR*fc*Ag; 

fccmat=-1*fcc; 

eccmat=-1*ecc; 

fcmat=-1*fc; 

ecmat=-1*ec1; 

Esh=Esh; 

  

% Set a few parameters for the building of the circular fiber sections 

rcon=Dc/2; 

rcov=colD/2; 

rsteel=Dc/2-dbh/2-dbl/2; 

theta=360/ns; 

  

% Establish the number of fibers in the section based on the fiber edge size wanted in the model 

length=1.0; 

lcover=1.0; 

nfcradial=round(ceil(0.5*Dc/length)); 

nfccirc=round(ceil(pi*Dc/length)); 

nfuradial=round(ceil(cover/lcover)); 

nfucirc=round(ceil(pi*colD/lcover)); 

  

% Writing the .tcl input file to go into OpenSees for analysis 

fid=fopen('input.tcl','w'); 

fprintf(fid,'set id %d\n',index); 

fprintf(fid,'set smodel Steel02\n'); 
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fprintf(fid,'set cmodel Concrete03\n'); 

fprintf(fid,'set P %f\n',P); %Defining the Axial Load 

fprintf(fid,'set colD %f\n',colD); %Defining the cross-section props. 

fprintf(fid,'set D %d\n',colD); %Need a second term for File ID 

fprintf(fid,'set Dc %f\n',Dc); 

fprintf(fid,'set cover %f\n',cover) 

fprintf(fid,'set Ag %f\n',Ag); 

fprintf(fid,'set rcon %f\n',rcon); 

fprintf(fid,'set rcov %f\n',rcov); 

fprintf(fid,'set rsteel %f\n',rsteel); 

fprintf(fid,'set theta %f\n',theta); 

fprintf(fid,'set ns %d\n',ns); 

fprintf(fid,'set Abar %f\n',Abl); 

fprintf(fid,'set dbl %f\n',dbl); 

fprintf(fid,'set Abh %f\n',Abh); 

fprintf(fid,'set dbh %f\n',dbh); 

fprintf(fid,'set rhos %f\n',rhos); 

fprintf(fid,'set s %f\n',s) 

fprintf(fid,'set Ke %f\n',Ke) 

fprintf(fid,'set fccmat %f\n',fccmat); %Start of Confined Concrete Props. 

fprintf(fid,'set eccmat %f\n',eccmat); 

fprintf(fid,'set Ecc %f\n',Ecc); 

fprintf(fid,'set ft2 %f\n',ft2); 

fprintf(fid,'set et2 %f\n',et2); 

fprintf(fid,'set xp2 %f\n',xp2); 

fprintf(fid,'set xn2 %f\n',xn2); 

fprintf(fid,'set r2 %f\n',r2); 
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fprintf(fid,'set ecu %f\n',ecu); 

fprintf(fid,'set fcmat %f\n',fcmat); %Start of Unconfined Concrete Props. 

fprintf(fid,'set ecmat %f\n',ecmat); 

fprintf(fid,'set Ec %f\n',Ec); 

fprintf(fid,'set ft1 %f\n',ft1); 

fprintf(fid,'set et1 %f\n',et1); 

fprintf(fid,'set xp1 %f\n',xp1); 

fprintf(fid,'set xn1 %f\n',xn1); 

fprintf(fid,'set r1 %f\n',r1); 

fprintf(fid,'set fye %f\n',fye); %Start of Steel R/F Material Props. 

fprintf(fid,'set fy %f\n',fy); 

fprintf(fid,'set fsu %f\n',fsu); 

fprintf(fid,'set Es %f\n',Es); 

fprintf(fid,'set Eratio %f\n',Eratio); 

fprintf(fid,'set Esh %f\n',Esh); 

fprintf(fid,'set esh %f\n',esh); 

fprintf(fid,'set esu %f\n',esu); 

fprintf(fid,'set nfcradial %d\n',nfcradial); 

fprintf(fid,'set nfccirc %d\n',nfccirc); 

fprintf(fid,'set nfuradial %d\n',nfuradial); 

fprintf(fid,'set nfucirc %d\n',nfucirc); 

fprintf(fid,'set maxK %f\n',maxK); %Establish the Analysis Parameters 

fprintf(fid,'set numIncr %f\n',numIncr); 

fclose(fid); 

  

%Need an input file for reading into the  

colH=colD/AspectRatio; 
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Parameters=[Abl;rhol;ns;Abh;rhos;s;Ke;fccmat;eccmat;fcmat;ecmat;ecu;colH]; 

[r,c]=size(Parameters); 

fid2=fopen(['param_',num2str(colD),'_',num2str(rhol),'_',num2str(ALR),'_',num2str(index),'.txt'],'w'); 

for x = 1:r 

    fprintf(fid2,'%e\t',Parameters(x,:)); 

    fprintf(fid2,'\r\n'); 

end 

fclose(fid2); 

B.1.2:Material Section Behavior using the AASHTO (2012) approach for minimum flexural 

curvature capacity 

function ACI1(index,colD,cover,rhol,ALR,BarNumLong,fc,fy,Es,Esh,esu,maxK,numIncr,AspectRatio) 

  

% Define areas and cross-sectional dimensions of steel reinforcement based on bar number 

Bar=[3,0.375,0.11;4,0.5,0.2;5,0.625,0.31;6,0.75,0.44;7,0.875,0.60;8,1,0.79; 

    9,1.128,1.00;10,1.270,1.27;11,1.410,1.56;14,1.693,2.25;18,2.257,4]; 

  

% establishing the properties of the longitudinal reinforcing bar 

barindex=find(Bar(1:end)==BarNumLong,1,'first'); 

Abl=Bar(barindex,3); 

dbl=Bar(barindex,2); 

  

%establishing the properties of the horizontal reinforcing bar 

if BarNumLong <= 9 

    BarNumHor=4; 

else 

    BarNumHor=5; 
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end 

  

barindexh=find(Bar(1:end)==BarNumHor,1,'first'); 

Abh=Bar(barindexh,3); 

dbh=Bar(barindexh,2); 

  

% Establish the cross-section dimensions and longitudinal r/f details based on the starting assumption of a #11 bar or  

% smaller longitudinally 

Dc=colD-2*cover+dbh; 

Ag=pi*(colD^2)/4; 

Ac=pi*(Dc^2)/4; 

Asl=rhol*Ag; 

ns1=round(ceil(Asl/Abl)); 

if ns1 >= 8 

    ns=ns1; 

else 

    while ns1 < 8 

        barindex=find(Bar(1:end)==BarNumLong); 

        Abl=Bar(barindex,3); 

        dbl=Bar(barindex,2); 

        ns1=round(ceil(Asl/Abl)); 

        BarNumLong=BarNumLong-1; 

    end 

    ns=ns1; 

    BarNumLong=BarNumLong+1 

    Abl 

    dbl 
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    ns 

end 

  

%establishing the properties of the horizontal reinforcing bar after adjusting the longitudinal bar if needed 

  

if BarNumLong <= 9 

    BarNumHor=4 

else 

    BarNumHor=5 

end 

  

barindexh=find(Bar(1:end)==BarNumHor,1,'first'); 

Abh=Bar(barindexh,3) 

dbh=Bar(barindexh,2) 

  

% Redefine the column sections based on the adjusted longitudinal bar 

Dc=colD-2*cover+dbh; 

Ag=pi*(colD^2)/4; 

Ac=pi*(Dc^2)/4; 

  

% Going to determine the unconfined concrete properties 

Ec=185000*(fc^0.375); 

ec1=(fc^0.25)/4000; 

ft1=7.5; % Could also look at 7.5*sqrt(fc) 

et1=2*ft1/Ec; 

r1=(fc/750)-1.9; 

xp1=1.23; 
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xn1=2.3; 

  

% Specify the steel properties of the system 

fye=1.1*fy; 

fsu=1.5*fye; 

esh=3.24*(fye/Es); 

Eratio=0.02; % ratio between the plastic and elastic moduli in model 

  

% Determine the horizontal reinforcement properties of the system 

rhos=0.12*(fc/fy); 

  

s=4*Abh/(Dc*rhos); 

  

% Establish the confined concrete properties 

sclear=s-dbh; 

rhocc=ns*Abl/Ac; 

Ke=min(1,(1-0.5*sclear/Dc)/(1-rhocc)); 

flp=Ke*fy*rhos/2; 

fcc=fc*(2.254*sqrt(1+7.94*flp/fc)-2*flp/fc-1.254); 

ecc=0.002*(1+5*(fcc/fc-1)); 

Ecc=185000*(fcc^0.375); 

ft2=7.5; % Could also look at 7.5*sqrt(fc) 

et2=2*ft2/Ecc; 

xp2=1.23; 

xn2=20; % This is supposed to be between 20-30 

n2=Ecc*ecc/fcc; 

r2=n2/(n2-1); 
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ecu=-1*(0.004+1.4*rhos*fy*esu/fcc); 

  

% Want to establish the necessary information for loading and material property definition with the sign convention 

% being (-) for compression and (+) for tension 

P=1*ALR*fc*Ag; 

fccmat=-1*fcc; 

eccmat=-1*ecc; 

fcmat=-1*fc; 

ecmat=-1*ec1; 

Esh=Esh; 

  

% Set a few parameters for the building of the circular fiber sections 

rcon=Dc/2; 

rcov=colD/2; 

rsteel=Dc/2-dbh/2-dbl/2; 

theta=360/ns; 

  

% Establish the number of fibers in the section based on the fiber edge size wanted in the model. 

length=1.0; 

nfcradial=round(ceil(0.5*Dc/length)); 

nfccirc=round(ceil(pi*Dc/length)); 

nfuradial=round(ceil(cover/length)); 

nfucirc=round(ceil(pi*colD/length)); 

  

% Writing the .tcl input file to go into OpenSees for analysis 

fid=fopen('input.tcl','w'); 

fprintf(fid,'set id %d\n',index); 
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fprintf(fid,'set smodel Steel02\n'); 

fprintf(fid,'set cmodel Concrete07\n'); 

fprintf(fid,'set P %f\n',P); %Defining the Axial Load 

fprintf(fid,'set colD %f\n',colD); %Defining the cross-section props. 

fprintf(fid,'set D %d\n',colD); %Need a second term for File ID 

fprintf(fid,'set Dc %f\n',Dc); 

fprintf(fid,'set rcon %f\n',rcon); 

fprintf(fid,'set rcov %f\n',rcov); 

fprintf(fid,'set rsteel %f\n',rsteel); 

fprintf(fid,'set theta %f\n',theta); 

fprintf(fid,'set ns %d\n',ns); 

fprintf(fid,'set Abar %f\n',Abl); 

fprintf(fid,'set fccmat %f\n',fccmat); %Start of Confined Concrete Props. 

fprintf(fid,'set eccmat %f\n',eccmat); 

fprintf(fid,'set Ecc %f\n',Ecc); 

fprintf(fid,'set ft2 %f\n',ft2); 

fprintf(fid,'set et2 %f\n',et2); 

fprintf(fid,'set xp2 %f\n',xp2); 

fprintf(fid,'set xn2 %f\n',xn2); 

fprintf(fid,'set r2 %f\n',r2); 

fprintf(fid,'set ecu %f\n',ecu); 

fprintf(fid,'set fcmat %f\n',fcmat); %Start of Unconfined Concrete Props. 

fprintf(fid,'set ecmat %f\n',ecmat); 

fprintf(fid,'set Ec %f\n',Ec); 

fprintf(fid,'set ft1 %f\n',ft1); 

fprintf(fid,'set et1 %f\n',et1); 

fprintf(fid,'set xp1 %f\n',xp1); 
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fprintf(fid,'set xn1 %f\n',xn1); 

fprintf(fid,'set r1 %f\n',r1); 

fprintf(fid,'set fye %f\n',fye); %Start of Steel R/F Material Props. 

fprintf(fid,'set fsu %f\n',fsu); 

fprintf(fid,'set Es %f\n',Es); 

fprintf(fid,'set Eratio %f\n',Eratio); 

fprintf(fid,'set Esh %f\n',Esh); 

fprintf(fid,'set esh %f\n',esh); 

fprintf(fid,'set esu %f\n',esu); 

fprintf(fid,'set nfcradial %d\n',nfcradial); 

fprintf(fid,'set nfccirc %d\n',nfccirc); 

fprintf(fid,'set nfuradial %d\n',nfuradial); 

fprintf(fid,'set nfucirc %d\n',nfucirc); 

fprintf(fid,'set maxK %f\n',maxK); %Establish the Analysis Parameters 

fprintf(fid,'set numIncr %f\n',numIncr); 

fclose(fid); 

  

%Need an input file for reading into the  

colH=colD/AspectRatio; 

Parameters=[Abl;rhol;ns;Abh;rhos;s;Ke;fccmat;eccmat;fcmat;ecmat;ecu;colH]; 

[r,c]=size(Parameters); 

fid2=fopen(['param_',num2str(colD),'_',num2str(rhol),'_',num2str(ALR),'_',num2str(index),'.txt'],'w'); 

for x = 1:r 

    fprintf(fid2,'%e\t',Parameters(x,:)); 

    fprintf(fid2,'\r\n'); 

end 

fclose(fid2); 
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B.1.3: Material Section Behavior using the AASHTO (2012) approach for maintaining the 

axial load capacity 

function CalTransMin(index,colD,cover,rhol,ALR,BarNumLong,fc,fy,Es,Esh,esu,maxK,numIncr,AspectRatio) 

  

% Define areas and cross-sectional dimensions of steel reinforcement based on bar number 

Bar=[3,0.375,0.11;4,0.5,0.2;5,0.625,0.31;6,0.75,0.44;7,0.875,0.60;8,1,0.79; 

    9,1.128,1.00;10,1.270,1.27;11,1.410,1.56;14,1.693,2.25;18,2.257,4]; 

  

% establishing the properties of the longitudinal reinforcing bar 

barindex=find(Bar(1:end)==BarNumLong,1,'first'); 

Abl=Bar(barindex,3); 

dbl=Bar(barindex,2); 

  

%establishing the properties of the horizontal reinforcing bar 

if BarNumLong <= 9 

    BarNumHor=4; 

else 

    BarNumHor=5; 

end 

  

barindexh=find(Bar(1:end)==BarNumHor,1,'first'); 

Abh=Bar(barindexh,3); 

dbh=Bar(barindexh,2); 

  

% Establish the cross-section dimensions and longitudinal r/f details based on the starting assumption of a #11 bar or  

% smaller longitudinally 

Dc=colD-2*cover+dbh; 
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Ag=pi*(colD^2)/4; 

Ac=pi*(Dc^2)/4; 

Asl=rhol*Ag; 

ns1=round(ceil(Asl/Abl)); 

if ns1 >= 8 

    ns=ns1; 

else 

    while ns1 < 8 

        barindex=find(Bar(1:end)==BarNumLong); 

        Abl=Bar(barindex,3); 

        dbl=Bar(barindex,2); 

        ns1=round(ceil(Asl/Abl)); 

        BarNumLong=BarNumLong-1; 

    end 

    ns=ns1; 

    BarNumLong=BarNumLong+1 

    Abl 

    dbl 

    ns 

end 

  

%establishing the properties of the horizontal reinforcing bar after adjusting the longitudinal bar if needed 

  

if BarNumLong <= 9 

    BarNumHor=4 

else 

    BarNumHor=5 
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end 

  

barindexh=find(Bar(1:end)==BarNumHor,1,'first'); 

Abh=Bar(barindexh,3) 

dbh=Bar(barindexh,2) 

  

% Redefine the column sections based on the adjusted longitudinal bar 

Dc=colD-2*cover+dbh; 

Ag=pi*(colD^2)/4; 

Ac=pi*(Dc^2)/4; 

  

% Going to determine the unconfined concrete properties 

Ec=185000*(fc^0.375); 

ec1=(fc^0.25)/4000; 

ft1=7.5; % Could also look at 7.5*sqrt(fc) 

et1=2*ft1/Ec; 

r1=(fc/750)-1.9; 

xp1=1.23; 

xn1=2.3; 

  

% Specify the steel properties of the system 

fye=1.1*fy; 

fsu=1.5*fye; 

esh=3.24*(fye/Es); 

Eratio=0.02; % ratio between the plastic and elastic moduli in model 

  

% Determine the horizontal reinforcement properties of the system 



www.manaraa.com

293 

 

 

 

rhos=0.45*((Ag/Ac)-1)*(fc/fy); 

  

s=4*Abh/(Dc*rhos); 

  

% Establish the confined concrete properties 

sclear=s-dbh; 

rhocc=ns*Abl/Ac; 

Ke=min(1,(1-0.5*sclear/Dc)/(1-rhocc)); 

flp=Ke*fy*rhos/2; 

fcc=fc*(2.254*sqrt(1+7.94*flp/fc)-2*flp/fc-1.254); 

ecc=0.002*(1+5*(fcc/fc-1)); 

Ecc=185000*(fcc^0.375); 

ft2=7.5; % Could also look at 7.5*sqrt(fc) 

et2=2*ft2/Ecc; 

xp2=1.23; 

xn2=20; % This is supposed to be between 20-30 

n2=Ecc*ecc/fcc; 

r2=n2/(n2-1); 

ecu=-1*(0.004+1.4*rhos*fy*esu/fcc); 

  

% Want to establish the necessary information for loading and material  property definition with the sign convention 

% being (-) for compression and (+) for tension 

P=1*ALR*fc*Ag; 

fccmat=-1*fcc; 

eccmat=-1*ecc; 

fcmat=-1*fc; 

ecmat=-1*ec1; 
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Esh=Esh; 

  

% Set a few parameters for the building of the circular fiber sections 

rcon=Dc/2; 

rcov=colD/2; 

rsteel=Dc/2-dbh/2-dbl/2; 

theta=360/ns; 

  

% Establish the number of fibers in the section based on the fiber edge size wanted in the model. 

length=1.0; 

nfcradial=round(ceil(0.5*Dc/length)); 

nfccirc=round(ceil(pi*Dc/length)); 

nfuradial=round(ceil(cover/length)); 

nfucirc=round(ceil(pi*colD/length)); 

  

% Writing the .tcl input file to go into OpenSees for analysis 

fid=fopen('input.tcl','w'); 

fprintf(fid,'set id %d\n',index); 

fprintf(fid,'set smodel Steel02\n'); 

fprintf(fid,'set cmodel Concrete07\n'); 

fprintf(fid,'set P %f\n',P); %Defining the Axial Load 

fprintf(fid,'set colD %f\n',colD); %Defining the cross-section props. 

fprintf(fid,'set D %d\n',colD); %Need a second term for File ID 

fprintf(fid,'set Dc %f\n',Dc); 

fprintf(fid,'set rcon %f\n',rcon); 

fprintf(fid,'set rcov %f\n',rcov); 

fprintf(fid,'set rsteel %f\n',rsteel); 
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fprintf(fid,'set theta %f\n',theta); 

fprintf(fid,'set ns %d\n',ns); 

fprintf(fid,'set Abar %f\n',Abl); 

fprintf(fid,'set fccmat %f\n',fccmat); %Start of Confined Concrete Props. 

fprintf(fid,'set eccmat %f\n',eccmat); 

fprintf(fid,'set Ecc %f\n',Ecc); 

fprintf(fid,'set ft2 %f\n',ft2); 

fprintf(fid,'set et2 %f\n',et2); 

fprintf(fid,'set xp2 %f\n',xp2); 

fprintf(fid,'set xn2 %f\n',xn2); 

fprintf(fid,'set r2 %f\n',r2); 

fprintf(fid,'set ecu %f\n',ecu); 

fprintf(fid,'set fcmat %f\n',fcmat); %Start of Unconfined Concrete Props. 

fprintf(fid,'set ecmat %f\n',ecmat); 

fprintf(fid,'set Ec %f\n',Ec); 

fprintf(fid,'set ft1 %f\n',ft1); 

fprintf(fid,'set et1 %f\n',et1); 

fprintf(fid,'set xp1 %f\n',xp1); 

fprintf(fid,'set xn1 %f\n',xn1); 

fprintf(fid,'set r1 %f\n',r1); 

fprintf(fid,'set fye %f\n',fye); %Start of Steel R/F Material Props. 

fprintf(fid,'set fsu %f\n',fsu); 

fprintf(fid,'set Es %f\n',Es); 

fprintf(fid,'set Eratio %f\n',Eratio); 

fprintf(fid,'set Esh %f\n',Esh); 

fprintf(fid,'set esh %f\n',esh); 

fprintf(fid,'set esu %f\n',esu); 
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fprintf(fid,'set nfcradial %d\n',nfcradial); 

fprintf(fid,'set nfccirc %d\n',nfccirc); 

fprintf(fid,'set nfuradial %d\n',nfuradial); 

fprintf(fid,'set nfucirc %d\n',nfucirc); 

fprintf(fid,'set maxK %f\n',maxK); %Establish the Analysis Parameters 

fprintf(fid,'set numIncr %f\n',numIncr); 

fclose(fid); 

  

%Need an input file for reading into the  

colH=colD/AspectRatio; 

Parameters=[Abl;rhol;ns;Abh;rhos;s;Ke;fccmat;eccmat;fcmat;ecmat;ecu;colH]; 

[r,c]=size(Parameters); 

fid2=fopen(['param_',num2str(colD),'_',num2str(rhol),'_',num2str(ALR),'_',num2str(index),'.txt'],'w'); 

for x = 1:r 

    fprintf(fid2,'%e\t',Parameters(x,:)); 

    fprintf(fid2,'\r\n'); 

end 

fclose(fid2); 

B.2: Batching Processes using Matlab 

This portion of Appendix B contains the coding files used in Matlab for conducting the 

batching process for moment-curvature, pushover and dynamic analyses conducted using 

OpenSEES. 

B.2.1: Moment-Curvature Analyses 

id=1 

a=0.01; 
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b=0.05; 

Es=29000000; 

fy=60000; 

fc=4000; 

N=15; 

AspectRatio=1/4; 

cvr=2.0; 

esu=0.12; 

maxCurv=0.005; 

Incr=300; 

for colD = 24:12:96 

    for ALR = [-0.05, 0.001, 0.05, 0.1, 0.15] 

        for rl = a:(b-a)/N:b 

        BarNumLong=11; 

        ACI1(id,colD,cvr,rl,ALR,BarNumLong,fc,fy,Es,85e04,esu,maxCurv,Incr,AspectRatio) 

        !OpenSees.exe "CircMPhiSteel.tcl" 

        % Post Processing of the Data 

        a1=load(['MCNode_',num2str(colD),'_',num2str(id),'.out']); 

        b1=load(['ConcStrainUnConf_',num2str(colD),'_',num2str(id),'.out']); 

        c1=load(['ConcStrainConf_',num2str(colD),'_',num2str(id),'.out']); 

        d1=load(['BarStrain_',num2str(colD),'_',num2str(id),'.out']); 

        MPhi=horzcat(a1,[b1(:,3)],[c1(:,3)],[d1(:,3)]); 

        fid2=fopen(['MPhi_',num2str(colD),'_',num2str(rl),'_',num2str(ALR),'_',num2str(id),'.txt'],'w'); 

        [row,col]=size(MPhi); 

        for x = 1:row 

            fprintf(fid2,'%e\t',MPhi(x,:)); 

            fprintf(fid2,'\r\n'); 
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        end 

        fclose(fid2); 

        id=id+1 

        end 

    end 

end 

   

a = 0.01; 

b = 0.05; 

K = 1; 

count = 1; 

J = 1; 

Es=29000000; 

fy=60000; 

N=15; 

  

% Loading of the full matrices for establishing the M-Phi response 

for colD = 

[24,24,24,24,24,36,36,36,36,36,48,48,48,48,48,60,60,60,60,60,72,72,72,72,72,84,84,84,84,84,96,96,96,96,96] 

    for n = 1+16*(K-1):(N+1)+16*(K-1) 

    rl2=a+(n-1-16*(K-1))*(b-a)/N 

    if count <= 80 

        ALR1 = -0.05*J+0.05*(K-1) 

        if ALR1 == 0 

            ALR = 0.001 

        else 

            ALR =  -0.05*J+0.05*(K-1) 
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        end 

        count = count + 1 

    else 

        J = J + 5 

        ALR = -0.05*J + 0.05*(K-1) 

        count = 2 

    end 

    A{n}=load(['MPhi_',num2str(colD),'_',num2str(rl2),'_',num2str(ALR),'_',num2str(n),'.txt']); 

    B{n}=load(['param_',num2str(colD),'_',num2str(rl2),'_',num2str(ALR),'_',num2str(n),'.txt']); 

    end 

K = K + 1 

end 

  

% Plotting the matrices constructed for M-Phi; M-ec,cover; M-ec,conf; M-es 

figure; 

for x = 1:(K-1)*(N+1) 

    subplot(2,2,1) 

    plot(A{x}(:,2),A{x}(:,1)); 

    hold all 

    grid 

    xlabel('Curvature (1/in)') 

    ylabel('Moment (lb-in)') 

    title('M-Phi') 

    subplot(2,2,2) 

    plot(A{x}(:,3),A{x}(:,1)) 

    hold all 

    grid 



www.manaraa.com

300 

 

 

 

    xlabel('Axial Strain') 

    ylabel('Moment (lb-in)') 

    title('M - ec,cover') 

    subplot(2,2,3) 

    plot(A{x}(:,4),A{x}(:,1)) 

    hold all 

    grid 

    xlabel('Axial Strain') 

    ylabel('Moment (lb-in)') 

    title('M - ec,conf') 

    subplot(2,2,4) 

    plot(A{x}(:,5),A{x}(:,1)) 

    hold all 

    grid 

    xlabel('Axial Strain') 

    ylabel('Moment (lb-in)') 

    title('M - es') 

end 

% Putting a grid to the plots created above 

subplot(2,2,1) 

grid 

subplot(2,2,2) 

grid 

subplot(2,2,3) 

grid 

subplot(2,2,4) 

grid 
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% Want to determine the first yield curvature of the section 

phi1all=[]; 

myprall=[]; 

for n = 1:(K-1)*(N+1) 

    for y=1:length(A{n}) 

        if (A{n}(y,5) >= fy/Es) && (A{n}([y-1],5) <= fy/Es) 

            m=((A{n}(y-1,2))-(A{n}(y-2,2)))/((A{n}(y-1,5))-(A{n}(y-2,5))); 

            b2=(A{n}(y-1,2))-m*(A{n}(y-1,5)); 

            phi1 = m*(fy/Es)+b2; 

            m3=((A{n}(y-1,1))-(A{n}(y-2,1)))/((A{n}(y-1,5))-(A{n}(y-2,5))); 

            b3=(A{n}(y-1,1))-m3*(A{n}(y-1,5)); 

            mypr1=m3*(fy/Es)+b3; 

        else 

            'NA'; 

        end 

   end 

   phi1all = [phi1all;phi1]; 

   myprall = [myprall;mypr1]; 

end 

  

% Want to establish the yield curvature of the section 

phi2all=[]; 

mnall=[]; 

for n = 1:(K-1)*(N+1) 

    for y=1:length(A{n}) 

        if (A{n}(y,4) >= -0.004) && (A{n}([y+1],4) <= -0.004) && (A{n}(y,5) <= 0.015) 
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            m1=A{n}(y,1); 

            m2=A{n}(y+1,1); 

            e1=A{n}(y,4); 

            e2=A{n}(y+1,4); 

            mn=m1+(-0.004-e1)*(m2-m1)/(e2-e1); 

            phi2 = phi1all(n,1)*(mn/myprall(n,1)); 

        elseif (A{n}(y,5) >= 0.015) && (A{n}(y-1,5) <= 0.015) && (A{n}(y,4) >= -0.004) 

            m1=A{n}(y,1); 

            m2=A{n}(y-1,1); 

            e1=A{n}(y,5); 

            e2=A{n}(y-1,5); 

            mn=m1+(-0.004-e1)*(m2-m1)/(e2-e1); 

            phi2 = phi1all(n,1)*(mn/myprall(n,1)); 

        else 

            'NA'; 

        end 

   end 

   phi2all = [phi2all;phi2]; 

   mnall=[mnall;mn]; 

end 

  

% Want to establish the ultimate curvature of the section 

phi3all=[]; 

muall=[]; 

for n = 1:(K-1)*(N+1) 

    for y=1:length(A{n}) 

       if (abs(A{n}(y,4)) >= abs(B{n}(12,1))) && (abs(A{n}([y-1],4)) <= abs(B{n}(12,1))) && (A{n}(y,5) <= 0.07) 
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            m1=A{n}(y,1); 

            m2=A{n}(y-1,1); 

            e1=A{n}(y,4); 

            e2=A{n}(y-1,4); 

            f1=A{n}(y,2); 

            f2=A{n}(y-1,2); 

            mu=m1+(B{n}(12,1)-e1)*(m2-m1)/(e2-e1); 

            phi3=f1+(B{n}(12,1)-e1)*(f2-f1)/(e2-e1); 

       elseif (A{n}(y,5) >= 0.07) && (A{n}(y-1,5) <= 0.07) && (abs(A{n}(y,4)) <= abs(B{n}(12,1))) 

            m1=A{n}(y,1); 

            m2=A{n}(y-1,1); 

            e1=A{n}(y,5); 

            e2=A{n}(y-1,5); 

            f1=A{n}(y,2); 

            f2=A{n}(y-1,2); 

            mu=m1+(0.07-e1)*(m2-m1)/(e2-e1); 

            phi3=f1+(0.07-e1)*(f2-f1)/(e2-e1); 

       else 

            'NA'; 

       end 

    end 

    phi3all = [phi3all;phi3]; 

    muall=[muall;mu]; 

end 

  

Mideal=[myprall phi1all mnall phi2all muall phi3all]; 
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fid3=fopen(['Mideal.txt'],'w'); 

[rows,col]=size(Mideal); 

for x = 1:rows 

   fprintf(fid3,'%e\t',Mideal(x,:)); 

   fprintf(fid3,'\r\n'); 

end 

fclose(fid3); 

B.2.2: Pushover Analyses 

% Going to run a series of pushover analyses based on same cross-section modifying the aspect ratio of this system.  

% This is for a circular column using the rhos as specified in the program (currently set at Priestley) 

  

%Trial Number 

id=1 

  

%Ultimate Curvature of the section based on M-phi analysis 

phiu=0.002 

  

%Axial Load Ratio 

ALR=0.05 

  

%Column Diameter 

colD=48 

  

%cover to main longitudinal bar 

cover=2 
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% diameter and area of main longitudinal r/f based on the BarNumber in thecross-section.  Establish the horizontal  

% bar area based on the longitudinal bar being used in the cross-section 

BarNumLong=11 

  

%desired amount of longitudinal r/f 

rhold=0.02 

  

%material properties for concrete and steel 

fc=4; 

fy=60; 

Es=29000 

  

% Need to establish some additional parameters for use in the Priestley function which writes the material properties 

% input file 

maxK=0.005 

Incr=300 

  

%setting up the actual batching process and writing the appropriate input file for the analysis 

for ARatio = [0.1,1/9,1/8,1/7,1/6,1/5,1/4,1/3] 

    %Establishing the length of the element to be used in the analysis 

    Lele=(1.2973*(ARatio^-1)) 

    %Going to establish the material values and section properties using matlab 

    %instead of OpenSees in the *.tcl file 

    Priestley(id,colD,cover,rhold,ALR,BarNumLong,fc,fy,Es,850,0.12,maxK,Incr,ARatio) 

    fid=fopen('input2.tcl','w'); 

    fprintf(fid,'set Trial %d\n',id); 

    fprintf(fid,'set Analoption Pushover\n'); 
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    fprintf(fid,'set concMat c03\n'); 

    fprintf(fid,'set steelMat s02\n'); 

    fprintf(fid,'set rhold %f\n',rhold); 

    fprintf(fid,'set Lele %f\n',Lele); 

    fprintf(fid,'set phiu %f\n',phiu); 

    fprintf(fid,'set ALR %f\n',ALR); 

    fprintf(fid,'set ARatio %f\n',ARatio); 

    fclose(fid); 

    !OpenSees.exe "CalTransPushCyclicSP.tcl" 

    id=id+1 

end 

 

%Writing a code to post process the output files created by OpenSEES. The goal is to get a final text document that  

% has the force, displacement,unconfined concrete strain, confined concrete strain, reinforcement strain at the  

% extreme layer 

  

% Start the process by loading the necessary files into matlab 

  

Disp=load('Dtop.out'); 

Force=load('FColTop.out'); 

BotUnSe=load('BotUCse2.out'); 

BotCCSe=load('BotCCse2.out'); 

BotRFse=load('BotRFse2.out'); 

  

% Combine the appropriate columns from each file into a single matrix 

  

Results=[Disp(:,2) Force(:,5) BotUnSe(:,3) BotCCSe(:,3) BotRFse(:,3)]; 
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% Want to establish the ultimate force and displacement of the analysis to write it into the final file.  This is going to  

% be based on the ultimate curvature as established in a moment-curvature analysis. Using a 48 inch column with 2  

% inch cover and #11 bar longitudinally and #5 bar horizontally. 

  

phiu=0.001662917; 

cover = 2; 

D = 48; 

dbl = 1.410; 

dbh = 0.625; 

Dpr = D-2*cover+dbh; 

Dbar = D-2*cover-dbl; 

Aspect=3; 

nele=37; 

  

NADepth = []; 

phi = []; 

for y=1:length(Results) 

    ccon=(Results(y,4)*(Dpr/2+Dbar/2)/(Results(y,4)-Results(y,5))); 

    phi1=abs(Results(y,4))/ccon; 

    if (phi <= phiu); 

        DispU = Results(y,1); 

        ForceU = Results(y,2); 

    else 

        'NA'; 

    end 

    NADepth = [NADepth;ccon]; 
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    phi = [phi;phi1]; 

end 

  

MFinal=[Results NADepth phi]; 

  

for y=1:length(MFinal); 

    if (MFinal(y,2) == ForceU); 

        phiu=MFinal(y,7); 

    end 

end 

  

% Need to establish the first yield displacement and force of the column system 

for y=1:length(Results); 

    if(Results(y,5) >= 66/29000) && (Results(y-1,5) <= 66/29000); 

        m=((Results(y-1,2))-(Results(y-2,2)))/((Results(y-1,5))-(Results(y-2,5))); 

        b2=(Results(y-1,2))-m*(Results(y-1,5)); 

        Fypr = m*(66/29000)+b2; 

        m3=((Results(y-1,1))-(Results(y-2,1)))/((Results(y-1,5))-(Results(y-2,5))); 

        b3=(Results(y-1,1))-m3*(Results(y-1,5)); 

        Dpry=m3*(66/29000)+b3; 

        m4=((MFinal(y-1,7))-(MFinal(y-2,7)))/((MFinal(y-1,5))-(MFinal(y-2,5))); 

        b4=(MFinal(y-1,7))-m4*(MFinal(y-1,5)); 

        phipry=m4*(66/29000)+b4; 

    end 

end 

  

%Need to establish the idealized yield displacement and force of the column based on the confined concrete strain  



www.manaraa.com

309 

 

 

 

% and steel strain in the system 

for y=1:length(Results) 

        if (Results(y,4) >= -0.004) && (Results([y+1],4) <= -0.004) && (Results(y,5) <= 0.015) 

            m1=Results(y,2); 

            m2=Results(y+1,2); 

            e1=Results(y,4); 

            e2=Results(y+1,4); 

            Fy=m1+(-0.004-e1)*(m2-m1)/(e2-e1); 

            Dy = Dpry*(Fy/Fypr); 

            phiy = phipry*(Fy/Fypr); 

        elseif (Results(y,5) >= 0.015) && (Results(y-1,5) <= 0.015) && (Results(y,4) >= -0.004) 

            m1=Results(y,2); 

            m2=Results(y-1,2); 

            e1=Results(y,5); 

            e2=Results(y-1,5); 

            Fy=m1+(-0.004-e1)*(m2-m1)/(e2-e1); 

            Dy = Dpry*(Fy/Fypr); 

            phiy = phipry*(Fy/Fypr); 

        end 

end 

  

% Want to establish the moment and curvature along the length of the column at the ultimate condition 

FLength=load('FLength.out'); 

RFLength=load('RFseLength.out'); 

UCLength=load('UCseLength.out'); 

CCLength=load('CCseLength.out'); 

MLength=[]; 
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for y=1:length(FLength); 

    if (FLength(y,1) == ForceU); 

        for i=1:1:37; 

            ML1=FLength(y,4+6*(i-1)); 

            UC1=UCLength(y,3+10*(i-1)); 

            CC1=CCLength(y,3+10*(i-1)); 

            RF1=RFLength(y,3+10*(i-1)); 

            NAD=(CC1*(Dpr/2+Dbar/2)/(CC1-RF1)); 

            curv=abs(CC1)/NAD; 

            MLength = [MLength;ML1 UC1 CC1 RF1 NAD curv]; 

        end 

    end 

end 

  

fid2=fopen('MomentLength.txt','w'); 

[rows,col]=size(MLength); 

for x=1:rows; 

    fprintf(fid2,'%e\t',MLength(x,:)); 

    fprintf(fid2,'\r\n'); 

end 

fclose(fid2); 

  

% Next up want to also establish an additional file that has curvature along the length at additional point from the 

% Gauss-Lobatto Integration technique 

curvature=[]; 

for y=1:length(FLength) 

    Lele=Aspect*D/nele; 
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    Loc1=0; 

    Loc2=(Lele/2)*(1-0.65465367); 

    Loc3=Lele/2; 

    Loc4=Lele/2+(Lele/2)*0.65465367; 

    Loc5=Lele; 

    if (FLength(y,1)==ForceU); 

        for i=1:1:37 

            Loca=(i-1)*Lele+Loc1; 

            UC1a=UCLength(y,3+10*(i-1)); 

            CC1a=CCLength(y,3+10*(i-1)); 

            RF1a=RFLength(y,3+10*(i-1)); 

            NADa=(CC1a*(Dpr/2+Dbar/2)/(CC1a-RF1a)); 

            curva=abs(CC1a)/NADa; 

            Locb=(i-1)*Lele+Loc2; 

            UC1b=UCLength(y,5+10*(i-1)); 

            CC1b=CCLength(y,5+10*(i-1)); 

            RF1b=RFLength(y,5+10*(i-1)); 

            NADb=(CC1b*(Dpr/2+Dbar/2)/(CC1b-RF1b)); 

            curvb=abs(CC1b)/NADb; 

            Locc=(i-1)*Lele+Loc3; 

            UC1c=UCLength(y,7+10*(i-1)); 

            CC1c=CCLength(y,7+10*(i-1)); 

            RF1c=RFLength(y,7+10*(i-1)); 

            NADc=(CC1c*(Dpr/2+Dbar/2)/(CC1c-RF1c)); 

            curvc=abs(CC1c)/NADc; 

            Locd=(i-1)*Lele+Loc4; 

            UC1d=UCLength(y,9+10*(i-1)); 
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            CC1d=CCLength(y,9+10*(i-1)); 

            RF1d=RFLength(y,9+10*(i-1)); 

            NADd=(CC1d*(Dpr/2+Dbar/2)/(CC1d-RF1d)); 

            curvd=abs(CC1d)/NADd; 

            Loce=(i-1)*Lele+Loc5; 

            UC1e=UCLength(y,11+10*(i-1)); 

            CC1e=CCLength(y,11+10*(i-1)); 

            RF1e=RFLength(y,11+10*(i-1)); 

            NADe=(CC1e*(Dpr/2+Dbar/2)/(CC1e-RF1e)); 

            curve=abs(CC1e)/NADe; 

            curvature=[curvature;Loca UC1a CC1a RF1a NADa curva;Locb UC1b CC1b RF1b NADb curvb;Locc 

UC1c CC1c RF1c NADc curvc;Locd UC1d CC1d RF1d NADd curvd;Loce UC1e CC1e RF1e NADe curve]; 

        end 

    end    

end 

  

% Write the curvature against length file 

fid3=fopen('CurvatureLength.txt','w'); 

[rows,col]=size(curvature); 

for x=1:rows; 

    fprintf(fid3,'%e\t',curvature(x,:)); 

    fprintf(fid3,'\r\n'); 

end 

fclose(fid3); 

  

Rotation=load('DBase2.out'); 

for y=1:length(Rotation); 
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    if (Rotation(y,1)==ForceU); 

        Qsp = Rotation(y,4); 

    end 

end 

  

% Write the final matrix to file 

  

fid=fopen('ForceDisp.txt','w'); 

fprintf(fid,'This is a file that contains the force and displacement results of an OpenSees Pushover Analysis.\n'); 

fprintf(fid,'\n'); 

fprintf(fid,'The analysis was taken to the ultimate curvature of the section based on an M-Phi Analysis\n'); 

fprintf(fid,'and the input file must be checked to determine the ultimate concrete strain to determine failure location 

of the column.\n'); 

fprintf(fid,'\n'); 

fprintf(fid,'The data is presented in the following form:\n'); 

fprintf(fid,'\n'); 

fprintf(fid,'Displacement (inches)  Force (kips)    Unconfined Concrete Strain (in/in)  Confined Concrete Strain 

(in/in)    Steel Strain (in/in)\n    NADepth (in)    Curvature(1/in)'); 

fprintf(fid,'\n'); 

[rows,col]=size(MFinal); 

for x = 1:rows 

    fprintf(fid,'%e\t',MFinal(x,:)); 

    fprintf(fid,'\r\n'); 

end 

fprintf(fid,'\n'); 

fprintf(fid,'First Yield Displacement = %e\n',Dpry); 

fprintf(fid,'First Yield Force = %e\n',Fypr); 
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fprintf(fid,'First Yield Curvature = %e\n',phipry); 

fprintf(fid,'Yield Displacement = %e\n',Dy); 

fprintf(fid,'Yield Force = %e\n',Fy); 

fprintf(fid,'Yield Curvature = %e\n',phiy); 

fprintf(fid,'Ultimate Displacment = %e\n',DispU); 

fprintf(fid,'Ultimate Force = %e\n',ForceU); 

fprintf(fid,'Ultimate Curvature = %e\n',phiu); 

fprintf(fid,'\n'); 

fprintf(fid,'Rotation due to Strain Penetration = %e\n',Qsp); 

fclose(fid); 

  

figure; 

plot(Results(:,1),Results(:,2)) 

grid 

xlabel('Displacement (in)') 

ylabel('Force (kip)') 

title('Force - Displacment') 

axis([0 Inf 0 Inf]) 

saveas(gcf,'Force_Disp.fig') 

  

figure; 

plot(curvature(:,6),curvature(:,1)) 

grid 

xlabel('Curvature (1/in)') 

ylabel('Length Along Column (in)') 

title('Curvature along Length') 

axis([0 Inf 0 Inf]) 
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saveas(gcf,'Curv_Length.fig') 

B.2.3: Dynamic Analyses 

%Earthquake Batch based on the stiffnesses that are selected based on the data from the Pushover analyses 

%Axial Load Ratio 

ALR=0.05 

%Column Diameter 

colD=48 

%cover to main longitudinal bar 

cover=2 

%diameter and area of main longitudinal r/f 

dbl=1.410; 

Abl=1.56; 

BarNumLong=11 

%diameter and area of hoop r/f 

dbh=0.625; 

Abh=0.31; 

%desired amount of longitudinal r/f 

rhold=0.02; 

%material properties for concrete and steel 

fc=4; 

fy=60; 

Es=29000; 

%Some additional Parameters are needed for the analysis 

maxK=0.005; 

Incr=300; 

% Time Stepping Information 
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DtAnalysis=0.005; 

TmaxAnalysis=39.945; 

% The actual time step size of the ground motion file 

dt=0.005; 

%setting up the actual batching process and writing the appropriate input file for the analysis 

id=1; 

for ARatio = [1/10,1/9,1/8,1/7,1/6,1/5,1/4,1/3] 

    %Establishing the length of the element to be used in the analysis 

    Lele=1.2973*(ARatio^-1); 

    Priestley(id,colD,cover,rhold,ALR,BarNumLong,fc,fy,Es,850,0.12,maxK,Incr,ARatio); 

    Stiffness=8348.9*((1/ARatio)^-2.858) 

    fid=fopen('inputeq.tcl','w'); 

    fprintf(fid,'set Analoption Earthquake\n'); 

    fprintf(fid,'set concMat c03\n'); 

    fprintf(fid,'set steelMat s02\n'); 

    fprintf(fid,'set rhold %f\n',rhold); 

    fprintf(fid,'set ALR %f\n',ALR); 

    fprintf(fid,'set ARatio %f\n',ARatio); 

    fprintf(fid,'set Lele %f\n',Lele); 

    fprintf(fid,'set Stiffness %f\n',Stiffness); 

    fprintf(fid,'set GMfile "LPRIETA.acc"\n'); 

    fprintf(fid,'set DtAnalysis %f\n',DtAnalysis); 

    fprintf(fid,'set TmaxAnalysis %f\n',TmaxAnalysis); 

    fprintf(fid,'set dt %f\n',dt) 

    fclose(fid); 

    !OpenSees.exe "CalTransEQSP2.tcl" 

    id=id+1 
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end 

 

 

% Writing a code to process the output files produced from the multiple earthquake runs.  Creating a final text 

% document and figures of the data to help understand what is going on. 

  

colD=input('What is the column diameter?'); 

cover=input('What is the cover to longitudinal reinforcement?'); 

dbh=input('What is the diameter of the horizontal reinforcing bar?'); 

dbl=input('What is the diameter of the longituidnal reinforcing bar?'); 

Period=input('What is the period of the structure being analyzed?'); 

ARatio=input('What is the aspect ratio of the column?'); 

EQ=input('What was the Earthquake Record used in the Analysis?','s'); 

  

% Loading the Files that are needed to produce the final files 

  

Disp=load('Dtop.out'); 

Force=load('FcolTop.out'); 

BotUCse=load('BotUCse2.out'); 

BotCCse=load('BotCCse2.out'); 

BotRFse=load('BotRFse2.out'); 

  

% Need to combine the appropriate columns into a matrix that is easier to work with. 

  

FDResults=[Disp,Force(:,2),Force(:,3),Force(:,4),Force(:,5),Force(:,6),Force(:,7)]; 

     

SEResults=[BotUCse(:,2),BotUCse(:,3),BotCCse(:,2),BotCCse(:,3),BotRFse(:,2),BotRFse(:,3)]; 
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% Create the Final Matrix that is fully combined with Force-Disp and Stress-Strain Information 

Final=[FDResults SEResults]; 

  

% Want to perform a couple of calculations to produce the Neutral Axis, Depth and the Curvature of the local  

% section at any given time 

  

% Define the depth of steel from the edge of the cover concrete section 

dsteel=colD-cover-dbl/2; 

NADepth=[]; 

curvature=[]; 

for y=1:length(Final); 

    ccov=Final(y,12)*dsteel/(Final(y,12)-Final(y,16)); 

    phi1=abs(Final(y,12))/ccov; 

    NADepth=[NADepth;ccov]; 

    curvature=[curvature;phi1]; 

end 

  

% Define the final matrix that now takes into account the neutral axis depth and curvature of the section 

Final2=[Final NADepth curvature]; 

  

% Going to write the fianl data set to a file called EQCompiledData.txt 

fid=fopen('EQCompiledData.txt','w'); 

fprintf(fid,'This is a file that contains the force, displacement, stress, strain and curvature results of an OpenSees 

Earthquake Analysis.\n'); 

fprintf(fid,'\n'); 

fprintf(fid,'Some of the important input information parameters are as follows:\n'); 
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fprintf(fid,'Column Diameter = %e\n',colD); 

fprintf(fid,'Aspect Ratio = %e\n',ARatio); 

fprintf(fid,'Period of the Structure = %e\n',Period); 

fprintf(fid,'Earthquake Ground Motion Record = %s\n',EQ); 

fprintf(fid,'\n'); 

fprintf(fid,'The data is presented in the following form:\n'); 

fprintf(fid,'\n'); 

fprintf(fid,'Time(sec) Dx(inches) Dy(inches) ThetaZ(rad) FxLow(kips) FyLow(kip) MzLow(kip-in) FxHigh(kips) 

FyHigh(kip) MzHigh(kip-in)\n'); 

fprintf(fid,'UCStress(ksi) UCStrain(in/in) CCStress(ksi) CCStrain(in/in) RFStress(ksi) RFStrain(in/in) NADepth(in) 

Curvature(1/in)\n'); 

fprintf(fid,'\n'); 

[rows,col]=size(Final2); 

for x = 1:rows 

    fprintf(fid,'%e\t',Final2(x,:)); 

    fprintf(fid,'\r\n'); 

end 

fclose(fid); 

  

figure; 

plot(Final2(:,2),Final2(:,8)) 

grid 

xlabel('Displacement (in)') 

ylabel('Force (kips)') 

title('EQ Force-Displacement') 

saveas(gcf,'EQForceDisp.emf') 
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figure; 

plot(Disp(:,1),Disp(:,2)) 

grid 

xlabel('Time (sec)') 

ylabel('Displacement (inches)') 

title('Displacement with Time') 

saveas(gcf,'DispTimeHistory.emf') 

B.3: OpenSEES Codes 

This portion of Appendix B contains the coding files used in OpenSEES that were accessed 

during the batching process within Matlab. 

B.3.1: Moment-Curvature Analysis 

#units of lbs and in 

 

#Clear the system of any previous operations 

wipe 

 

# Bring in the important design information from the Matlab coded input file 

source "input.tcl" 

 

# Establish information for the writing of the file name during recording of data 

set Specimen1 $D 

set Specimen2 _$id 

 

# The term below defines the edge of the confined concrete region 

set rrec [expr $rcov-2.0] 
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# Define the model (Two Dimensions and 3 DOF/node) 

model BasicBuilder -ndm 2 -ndf 3 

 

# Define the concrete material behavior using Concrete07 (tag, fc, ec, Ec, ft, et, xp, xn, r) 

# ---------------------------------------------------------------------------------------------  

# For the Confined Concrete Model Going to Need 

 

if {$cmodel == "Concrete02"} { 

 uniaxialMaterial Concrete02 1 $fccmat $eccmat [expr 0.1*$fccmat] $ecu .1 $ft2 [expr $Ec/10] 

 } else { 

 uniaxialMaterial Concrete07 1 $fccmat $eccmat $Ecc $ft2 $et2 $xp2 $xn2 $r2 

} 

 

# Cover Concrete 

 

if {$cmodel == "Concrete02"} { 

 uniaxialMaterial Concrete02 2 $fcmat $ecmat [expr 0.1*$fcmat] -0.008 .1 $ft1 [expr $Ec/10] 

 } else { 

 uniaxialMaterial Concrete07 2 $fcmat $ecmat $Ec $ft1 $et1 $xp1 $xn1 $r1 

} 

 

# Define the steel material behavior using ReinforcingSteel (tag fy fu Es esh eu) 

# Also going to define a second steel model in case it is needed use Steel02 (tag fy E b R0 cR1 cR2) 

 

if {$smodel == "ReinforcingSteel"} { 

 uniaxialMaterial ReinforcingSteel 3 $fye $fsu $Es $Esh $esh $esu 

 } else { 
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 uniaxialMaterial Steel02 3 $fye $Es $Eratio 18 0.925 0.15 0 5 0 5 

} 

 

# Create the section itself using fibers 

section Fiber 1 { 

 # Confined Concrete Fibers 

 patch circ 1 $nfccirc $nfcradial 0 0 0 $rcon 0 360 

 # Unconfined Concrete Fibers 

 patch circ 2 $nfucirc $nfuradial 0 0 $rcon $rcov 0 360 

 # Reinforcing Steel Fibers (Tag nFiber AFiber yCenter zCenter radius <startAng endAng> 

 layer circ 3 $ns $Abar 0.00 0.00 $rsteel 0 360 

} 

 

 

#Need to create the Nodes for the System itself 

node 1 0.0 0.0 

node 2 0.0 0.0 

 

# Apply Boundary Conditions (for this problem x, y, rotation) 

# The y direction is fixed at Node 2 as the axial load is in the local x-direction of the zerolength element 

fix 1 1 1 1 

fix 2 0 1 0 

 

# Define the element so that the moment curvature procedure can be run 

element zeroLengthSection 1 1 2 1 

 

#Create a series of recorders for monitoring the overall system response 
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# Record the Moment-Curvature behavior based on the 2nd node of the system 

# --------------------------------------------- 

recorder Node -file MCNode_$Specimen1$Specimen2.out -time -node 2 -dof 3 disp 

 

# Record the material behaviors of the system within the cross-section 

# --------------------------------------------- 

recorder Element -file BarStrain_$Specimen1$Specimen2.out -time -ele 1 section fiber -$rrec 0 3 stressStrain 

recorder Element -file ConcStrainT_$Specimen1$Specimen2.out -time -ele 1 section fiber -$rcov 0 2 stressStrain 

recorder Element -file ConcStrainConf_$Specimen1$Specimen2.out -time -ele 1 section fiber $rrec 0 1 stressStrain 

recorder Element -file ConcStrainUnConf_$Specimen1$Specimen2.out -time -ele 1 section fiber $rcov 0 2 

stressStrain 

 

# Record the Forces of the element at the top and bottom nodes to verify the Moment Behavior 

# --------------------------------------------- 

recorder Element -file Forces_$Specimen1$Specimen2.out -time -ele 1 section force 

 

puts "recorder ok" 

 

# Define constant axial load using pattern (type tag tsTag { 

# using a nodal load with load (node $ndfLoadValues) 

 

pattern Plain 1 "Constant" { 

 load 2 [expr -1*$P] 0.0 0.0 

}  
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puts "loading ok" 

puts "Ultimate Strain" 

puts $ecu 

 

# Define the analysis parameters 

integrator LoadControl 0.0 

system SparseGeneral -piv 

#test NormDispIncr 1.0e-8 100 0 

test NormUnbalance 1.0e-04 600 0 

numberer Plain 

constraints Plain 

algorithm KrylovNewton 

analysis Static 

 

# Do a single analysis for constant axial load 

analyze 1 

 

# Define a reference moment 

pattern Plain 2 "Linear" { 

 load 2 0.0 0.0 1.0 

} 

 

# Compute curvature and increments 

set dK [expr $maxK/$numIncr] 

 

# Use displacement control at node 2 for section analysis 

integrator DisplacementControl 2 3 $dK 
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set a [eleResponse 1 section fiber -$rrec 0.0 3 strain] 

 

#Perform the section analysis 

 

while {$a <= 0.07} { 

 analyze 1 

 set a [eleResponse 1 section fiber -$rrec 0.0 3 strain] 

 } 

 

exit 

B.3.2: Pushover Analysis 

# Start the development of the model 

# units: kip, inch, sec 

# 

# clear any data from any previous analyses 

wipe; 

 

# Establish the type of analysis to be used for this column section and some basic information about the materials 

#set Analoption Pushover;     # want this to be "Cyclic" for a cyclic analysis otherwise something else to run 

pushover analysis 

#set Trial 1 

#set concMat c03;     # Options are c07, c02, c03 

#set steelMat s02;     # Options are rs, s02  

#set phiu 0.00144995;     # Ultimate curvature of the concrete section (from moment-curvature analysis) 

#set ARatio 0.25; # Column Aspect Ratio 
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#set ALR 0.05;     # Column Axial Load Ratio 

#set colD 48;     # Column Diameter 

 

#Going to call up the above information using Matlab to do the batching process 

source input.tcl 

source input2.tcl 

 

# Create a file folder location for all of the data in the OpenSees folder 

set File 

Data_multDispEle_ATC_D{$colD}_ConcMat{$concMat}_SteelMat{$steelMat}_ALR{$ALR}_Aspect{$ARatio}

_{$Analoption}_Trial{$Trial}_SP; 

file mkdir $File; 

 

# define the model builder and how many dimensions and degrees of freedom 

model BasicBuilder -ndm 2 -ndf 3 

 

# define some important constants for calculations 

#set pi [expr 4*atan(1)]; 

#set g 386.4;     # establshing the gravity constant in in/sec^2 

 

# Define some geometry of the section 

#set colD 48; 

#set Ag [expr $pi*pow($colD,2)/4]; 

#set cover 2.;     # Cover to Longitudinal Bar 

#set dbl 1.410;     # Longitudinal Bar Diameter 

#set Abl 1.56;     # Longitudinal Bar Area 

#set dbh 0.625;     # Hoop Bar Diameter 
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#set Abh 0.31;     # Hoop Bar Area 

#set Dpr [expr $colD-2*$cover+$dbh]; 

#set Ac [expr $pi*pow($Dpr,2)/4]; 

#set Dbar [expr $colD-2*$cover-$dbl]; 

 

# Establish the important radii for the section definition 

#set rout [expr $colD/2]; 

#set rpr [expr $Dpr/2]; 

#set rbar [expr $Dbar/2]; 

set dconf [expr $rcon+$rsteel];     # depth of steel bar from the confined concrete region definition 

 

# Define the geometry of the column above the foundation 

set Lcol [expr $colD/$ARatio]; 

#set Lele [expr 1.2973*pow($ARatio,-1)]; 

set colNumIncr [expr int(ceil($Lcol/$Lele))]; 

puts "colNumIncr = $colNumIncr" 

set colIncr [expr $Lcol/$colNumIncr]; 

 

# Define the number of longitudinal bars to be used in the section model 

#set rhold 0.02; 

#set Asd [expr $rhold*$Ag]; 

#set ns [expr int(ceil($Asd/$Abl))]; 

set rhola [expr $ns*$Abar/$Ag]; 

 

# nodal coordinates for the model - node(node#, X, Y) 

 

node 1 0.0 0.0 
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node 2 0.0 0.0 

 

for {set i 1} {$i <= $colNumIncr} {incr i 1} { 

 node [expr $i+2] 0 [expr $i*$colIncr] 

 puts "node [expr $i+2] = [expr $i*$colIncr]" 

} 

puts "nodes established" 

 

# Single point constraints -- Boundary Conditions fix(node #, DX, DY, RZ) 

fix 1 1 1 1 

 

# Going to establish the nodal conditions at the top of the strain penetration element 

# Creating an equal dof such that the element can slip along the length of the element in 

# local coordinate system.  Thus only constrain the dof 2 using: 

# equalDOF (Master Node, Slave Node, DOF to match) 

equalDOF 1 2 1 

 

# Define the material properties that are going to be used in the fiber section 

# 

# Unconfined Concrete Properties First 

#set fc 4; 

#set Ec [expr 57*pow($fc*1000,0.5)]; 

#set ec [expr pow($fc*1000,0.25)/4000]; 

#set ft1 0.0005; 

#set et1 [expr 2*$ft1/$Ec]; 

#set xp1 1.23;   

#set xn1 2.3;    
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#set r1 [expr ($fc*1000/750)-1.9]; 

#set fc1 [expr -1*$fc]; 

#set ec1 [expr -1*$ec]; 

 

# Reinforcing Steel Properties 

#set fy 60.; 

#set fye [expr 1.1*$fy]; 

#set fsu [expr 1.5*$fye]; 

#set Es 29000.; 

#set Esh 850.; 

#set esh [expr 3.24*$fye/$Es]; 

#set esu 0.12; 

#set Eratio 0.02; 

 

# Define the column axial load 

#set PCol [expr $ALR*$fc1*$Ag]; 

 

# Confined Concrete Properties 

#set rhos [expr 0.16*($fc/$fy)*(0.5+1.25*$ALR)+0.13*($rhola-0.01)];     # ATC-32 Reccommendation and values 

in Priestley (1996) 

#set rhos [expr 0.45*($fc/$fy)*(($Ag/$Ac)-1)];     #This is the Caltrans Minimum Equation 

#set s [expr 4*$Abh/($Dpr*$rhos)]; 

#set sclear [expr $s-$dbh]; 

#set rhocc [expr $ns*$Abl/$Ac]; 

#set Ke [expr (1-0.5*$sclear/$Dpr)/(1-$rhocc)]; 

#puts "Ke = $Ke" 

#set flp [expr $Ke*$fy*$rhos/2]; 



www.manaraa.com

330 

 

 

 

#set fcc [expr $fc*(2.254*pow((1+7.94*$flp/$fc),0.5)-2*$flp/$fc-1.254)]; 

#set ecc [expr 0.002*(1+5*($fcc/$fc-1))]; 

#set Ecc [expr 57*pow($fc*1000,0.5)]; 

#set ft2 0.0005; 

#set et2 [expr 2*$ft2/$Ecc]; 

#set xp2 1.23; 

#set xn2 20;     # this is supposed to be between 20-30 based on information provided by others using Concrete07 

#set n2 [expr $Ecc*$ecc/$fcc]; 

#set r2 [expr $n2/($n2-1)]; 

#set ecu [expr -1*(0.004+1.4*$rhos*$fy*$esu/$fcc)]; 

set rmander [expr $Ecc/($Ecc-($fccmat/$eccmat))]; 

set xult [expr $ecu/$eccmat]; 

puts "xult = $xult" 

set fccu [expr ($fccmat*$xult*$rmander)/($rmander-1+pow($xult,$rmander))]; 

#set fc2 [expr -1*$fcc]; 

#set ec2 [expr -1*$ecc]; 

set fcu2 [expr $fccu]; 

#set fcu2 -4.; 

puts "ultimate compressive strength = $fcu2" 

puts "confined concrete properties ok" 

 

# Writing a text file of the information used for the analysis 

set out [open "$File/Input.txt" w] 

puts $out "Units in the Program" 

puts $out "Forces are in kips" 

puts $out "Displacements and Dimensions are in inches" 

puts $out "Time is in Seconds" 
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puts $out "" 

puts $out "" 

puts $out "Analysis Type = $Analoption" 

puts $out "" 

puts $out "" 

puts $out "Section Geometry" 

puts $out "" 

puts $out "Column Diameter = $colD" 

puts $out "Cover to Main Bar = $cover" 

puts $out "Longitudinal Bar Diameter = $dbl" 

puts $out "Longitudianl Bar Area = $Abar" 

puts $out "Number Longitudinal Bars = $ns" 

puts $out "Longitudinal Reinforcement Ratio = $rhola" 

puts $out "Hoop Bar Diameter = $dbh" 

puts $out "Hoop Bar Area = $Abh" 

puts $out "Hoop Spacing = $s" 

puts $out "Horizontal Reinforcement Ratio = $rhos" 

puts $out "" 

puts $out "" 

puts $out "Column Geometry above the Spread Footing" 

puts $out "" 

puts $out "Column Height = $Lcol" 

puts $out "Aspect Ratio = $ARatio" 

puts $out "Element Length = $colIncr" 

puts $out "Number of Elements = $colNumIncr" 

puts $out "" 

puts $out "" 
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puts $out "Applied Loads" 

puts $out "" 

puts $out "Column Axial Load At Top = $P" 

puts $out "" 

puts $out "" 

puts $out "Unconfined Concrete Material Properties" 

puts $out "" 

puts $out "Compressive Strength = $fcmat" 

puts $out "Strain at Compressive Strength = $ecmat" 

puts $out "Modulus of Elasticity = $Ec" 

puts $out "Tensile Strength = $ft1" 

puts $out "Tensile Strain = $et1" 

puts $out "Concrete Model is $concMat" 

puts $out "" 

puts $out "" 

puts $out "Confined Concrete Material Properties" 

puts $out "" 

puts $out "Confinement Effectiveness, Ke = $Ke" 

puts $out "Compressive Strength = $fccmat" 

puts $out "Strain at Compressive Strength = $eccmat" 

puts $out "Modulus of Elasticity = $Ecc" 

puts $out "Ultimate Compressive Strain = $ecu" 

puts $out "Ultimate Compressive Stress = $fcu2" 

puts $out "Tensile Strength = $ft2" 

puts $out "Tensile Strain = $et2" 

puts $out "Concrete Model is $concMat" 

puts $out "" 
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puts $out "" 

puts $out "Reinforcing Steel Material Properties" 

puts $out "" 

puts $out "Hoop Yield Stress = $fy" 

puts $out "Longitudinal Yield Stress = $fye" 

puts $out "Ultimate Stress = $fsu" 

puts $out "Modulus of Elasticity = $Es" 

puts $out "Hardening Steel Strain = $esh" 

puts $out "Hardening Modulus of Elasticity = $Esh" 

puts $out "Ultimate Steel Strain = $esu" 

puts $out "Steel Model is $steelMat" 

close $out 

 

 

 

# Write the actual material property definitions in OpenSees 

# Concrete Properties using Concrete07(tag, fc, ec, Ec, ft, et, xp, xn, r) 

# Concrete Properties using Concrete02(tag,fc, ec, fc(crushing), ec(crushing), lambda, ft, Ets) 

# Concrete Properties using Concrete03(tag, fc, ec, fc (crushing), ec (crushing), lambda (0.1), ft, ets0 (tension 

transition to strain softening), ft0 (tesnsion stress at softening transition), beta (exponent tension soft), etu (ultimate 

tensile strain)) 

# Steel Properties using ReinforcingSteel(tag, fy, fu, Es, Esh, esh, esu) 

# Steel Properties using Steel02(tag, fy, Es, b(0.015), R0 (between 10 and 20), CR1 (0.925), CR2(0.15), a1(0), 

a2(5), a3(0), a4(5) 

# ---------------------------------------------------------------------------------------------- 

# Unconfined Concrete Models 

if {$concMat == "c07"} { 
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 uniaxialMaterial Concrete07 2 $fcmat $ecmat $Ec $ft1 $et1 $xp1 $xn1 $r1 

} elseif {$concMat == "c02"} { 

 uniaxialMaterial Concrete02 2 $fcmat $ecmat [expr 0.1*$fcmat] -0.008 0.1 $ft1 [expr $Ec/10] 

} else { 

 uniaxialMaterial Concrete03 2 $fcmat $ecmat -0.01 -0.0091 0.1 $ft1 0.003 0.0004 2.5 0.004 

} 

 

# Confined Concrete Models 

if {$concMat == "c07"} { 

 uniaxialMaterial Concrete07 1 $fccmat $eccmat $Ecc $ft2 $et2 $xp2 $xn2 $r2 

} elseif {$concMat == "c02"} { 

 uniaxialMaterial Concrete02 1 $fccmat $eccmat [expr 0.1*$fccmat] $ecu 0.1 $ft2 [expr $Ec/10] 

} else { 

 uniaxialMaterial Concrete03 1 $fccmat $eccmat $fcu2 $ecu 0.1 $ft2 0.003 0.0004 2.5 0.004 

} 

 

# Reinforcing Steel Models 

if {$steelMat == "rs"} { 

 uniaxialMaterial ReinforcingSteel 3 $fye $fsu $Es $Esh $esh $esu 

} else { 

 uniaxialMaterial Steel02 3 $fye $Es $Eratio 18 0.925 0.15 0 5 0 5 

} 

 

# Strain Penetration Model Needs to be Defined 

# Defining the Slip Curve using Bond_SP01 $matTag $Fy $Sy $Fu $Su $b $R 

# Fy = yield stress of r/f steel 

# Sy = rebar slip at member interface under yield stress 
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# Fu = ultimate strength of reinforcing steel 

# Su = rebar slip at the loaded end at the bar fracture strength 

# b = initial hardening ratio in the monotonic slip vs. bar stress response (0.3 ~ 0.5) (Paper says 0.5 in columns) 

# R = Pinching factor for the cyclic slip vs. bar response (0.5 ~ 1.0) (Paper says 1.0 columns and 0.7 tee-joint) 

 

set alpha 0.4; 

set alphain [expr 1/$alpha]; 

set Fy [expr $fye*1000]; 

set bracket [expr ($dbl/4000)*($Fy/pow(-1*$fccmat*1000,0.5))*(2*$alpha+1)]; 

set Sy [expr 0.1*pow($bracket,$alphain)+0.013] 

set Su [expr 40*$Sy] 

set b 0.5; 

set R 1.0; 

puts "Yield Slip = $Sy" 

puts "Ultimate Slip = $Su" 

 

uniaxialMaterial Bond_SP01 4 $fye $Sy $fsu $Su $b $R 

 

puts "Materials Defined" 

 

# Create the fiber section to be used in the analysis for this model of a circular column 

# --------------------------------------------------- 

# Define the number of fibers to be used in the cross-section 

#set length 0.5 

#set nfcradial [expr int(ceil(0.5*$Dpr/$length))] 

#set nfccirc [expr int(ceil($pi*$Dpr/$length))] 

#set nfuradial [expr int(ceil($cover/$length))] 
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#set nfucirc [expr int(ceil($pi*$colD/$length))] 

 

# Define the cross-section using fibers 

 

section Fiber 1 { 

 patch circ 1 $nfccirc $nfcradial 0 0 0 $rcon 0 360 

 patch circ 2 $nfucirc $nfuradial 0 0 $rcon $rcov 0 360 

 layer circ 3 $ns $Abar 0 0 $rsteel 0 360 

 } 

 

section Fiber 2 { 

 patch circ 1 $nfccirc $nfcradial 0 0 0 $rcon 0 360 

 patch circ 2 $nfucirc $nfuradial 0 0 $rcon $rcov 0 360 

 layer circ 4 $ns $Abar 0 0 $rsteel 0 360 

 } 

  

# define geometric transformation to transform basic system to global system 

geomTransf Linear 101 

#geomTransf PDelta 101 

 

# establish the element(s) for use in the model 

set numIntgrPts 5; 

 

element zeroLengthSection 1 1 2 2 -orient 0 1 0 1 0 0 

# in the orientation term $x1 $x2 $x3 define the local x-axis in global coordinates 

# the yp terms can be found as the x vector crossed with yp equals your z-vector direction 
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for {set i 1} {$i <= $colNumIncr} {incr i 1} { 

 element dispBeamColumn [expr $i+1] [expr $i+1] [expr $i+2] $numIntgrPts 1 101 

 puts "element = [expr $i+1] for node [expr $i+1] and [expr $i+2]" 

} 

 

puts "elements defined" 

 

# Define RECORDERS ---------------------------------------------------------------------------  

recorder Node -file $File/DFree1.out -time -node 2 -dof 1 2 3 disp; 

recorder Node -file $File/Dtop.out -time -node [expr $colNumIncr+2] -dof 1 2 3 disp; 

recorder Node -file $File/DBase1.out -time -node 1 -dof 1 2 3 disp; 

recorder Node -file $File/RBase1.out -time -node 1 -dof 1 2 3 reaction; 

recorder Node -file $File/DBase2.out -time -node 2 -dof 1 2 3 disp; 

recorder Node -file $File/Rbase2.out -time -node 2 -dof 1 2 3 reaction; 

#recorder Drift -file $File/Drift1.out -time -iNode 1 -jNode 2 -dof 1 -perpDirn 2; 

#recorder Drift -file $File/Drift2.out -time -iNode 2 -jNode 3 -dof 1 -perpDirn 2; 

#recorder Drift -file $File/DriftTot.out -time -iNode 1 -jNode [expr $colNumIncr+1] -dof 1 -perpDirn 2; 

recorder Element -file $File/FCol1.out -time -ele 1 globalForce; 

recorder Element -file $File/Fcol2.out -time -ele 2 globalForce 

recorder Element -file $File/FColTop.out -time -ele [expr $colNumIncr+1] globalForce; 

recorder Element -file $File/TopUCse.out -time -ele [expr $colNumIncr+1] section fiber -$rcov 0.0 2 stressStrain 

recorder Element -file $File/BotUCse1.out -time -ele 1 section fiber -$rcov 0.0 2 stressStrain 

recorder Element -file $File/BotUCse2.out -time -ele 2 section fiber -$rcov 0.0 2 stressStrain 

recorder Element -file $File/TopCCse.out -time -ele [expr $colNumIncr+1] section fiber -$rcon 0.0 1 stressStrain 

recorder Element -file $File/BotCCse1.out -time -ele 1 section fiber -$rcon 0.0 1 stressStrain 

recorder Element -file $File/BotCCse2.out -time -ele 2 section fiber -$rcon 0.0 1 stressStrain 

recorder Element -file $File/TopRFse.out -time -ele [expr $colNumIncr+1] section fiber $rsteel 0.0 3 stressStrain 
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recorder Element -file $File/BotRFse1.out -time -ele 1 section fiber $rsteel 0.0 4 stressStrain 

recorder Element -file $File/BotRFse2.out -time -ele 2 section fiber $rsteel 0.0 3 stressStrain 

#recorder Element -file $File/DefoCol1.out -time -ele 1 basicDeformation; 

#recorder Element -file $File/DefoCol2.out -time -ele 2 basicDeformation; 

#recorder Element -file $File/FColSec1_1.out -time -ele 1 section 1 force; 

#recorder Element -file $File/FColSec1_2.out -time -ele 2 section 1 force; 

#recorder Element -file $File/DefoColSec1_1.out -time -ele 1 section 1 deformation; 

#recorder Element -file $File/DefoColSec1_2.out -time -ele 2 section 1 deformation; 

#recorder Element -file $File/FColSec{$numIntgrPts}_1.out -time -ele 1 section $numIntgrPts force; 

#recorder Element -file $File/FColSec{$numIntgrPts}_2.out -time -ele 2 section $numIntgrPts force; 

#recorder Element -file $File/DefoColSec{$numIntgrPts}_1.out -time -ele 1 section $numIntgrPts deformation; 

#recorder Element -file $File/DefoColSec{$numIntgrPts}_2.out -time -ele 1 section $numIntgrPts deformation; 

recorder Element -file $File/FLength.out -time -eleRange 2 [expr $colNumIncr+1] globalForce 

recorder Element -file $File/RFseLength.out -time -eleRange 2 [expr $colNumIncr+1] section fiber $rsteel 0 3 

stressStrain 

recorder Element -file $File/CCseLength.out -time -eleRange 2 [expr $colNumIncr+1] section fiber -$rcon 0 1 

stressStrain 

recorder Element -file $File/UCseLength.out -time -eleRange 2 [expr $colNumIncr+1] section fiber -$rcov 0 2 

stressStrain 

 

puts "recorders started" 

 

# define the Gravity Load on the column --------------------------------------------------------- 

pattern Plain 1 Linear { 

 load [expr $colNumIncr+2] 0 [expr -1*$P] 0 

} 
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set Tol 1.0e-8; 

constraints Plain; 

numberer Plain; 

system BandGeneral; 

test NormDispIncr $Tol 10; 

algorithm Newton; 

set NstepGravity 10; 

set DGravity [expr 1./$NstepGravity]; 

integrator LoadControl $DGravity; 

analysis Static 

analyze $NstepGravity 

 

# Maintain the applied gravity load and reset the time of the program to 0 

loadConst -time 0.0 

puts "Gravity load applied, moving to cyclic analysis" 

 

# define the cyclic lateral load analysis ------------------------------------------------------- 

# 

# Establish the model parameters specific to this analysis 

set IDctrlNode [expr $colNumIncr+2]; 

puts "IDctrlNode = $IDctrlNode" 

set IDctrlDOF 1;     # This is for the Global X-Direction, 2 is the Global Y-Direction, 3 is the Global Rotation about 

z 

set du [expr -25.55*$ARatio+32.55]; 

set nsteps 600; 

set Dincr [expr $du/$nsteps]; 
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# Define the static analysis parameters for this process 

set tolerance 1.0e-5 

set nItr 100 

set maxNumItrStatic 5000 

#constraints Plain; 

#numberer Plain; 

#system SparseGeneral -piv 

#test EnergyIncr $tolerance $nItr 1 

#test NormUnbalance $tolerance $nItr 1 

#algorithm KrylovNewton 

#analysis Static 

 

pattern Plain 200 Linear { 

 load $IDctrlNode 1.0 0.0 0.0 

} 

 

if {$Analoption != "Cyclic"} { 

 puts "running the pushover analysis" 

 set a [eleResponse 2 section 1 fiber -$rcon 0.0 1 strain] 

 set b [eleResponse 2 section 1 fiber $rcov 0.0 3 strain] 

 set cconf [expr $a*$dconf/($a-$b)];     # This is the neutral axis depth of concrete from the confined region 

 set curv [expr abs($a)/$cconf];     # This is the curvature of the concrete section at the bottom node 

 while {$curv <= $phiu} {  

  set ok 0 

  constraints Plain 

  numberer Plain 

  system SparseGeneral -piv 
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  test EnergyIncr $tolerance $nItr 1 

  algorithm KrylovNewton 

  integrator DisplacementControl $IDctrlNode $IDctrlDOF $Dincr 

  analysis Static 

  set ok [analyze 1] 

  if {$ok != 0} { 

   puts "Trying Krylov Newton with Different Tolerance and # of Iterations and NormDispIncr test" 

   set tolerance 1.0e-4 

   set nItr $maxNumItrStatic 

   constraints Plain 

   numberer Plain 

   system SparseGeneral -piv 

   test normDispIncr $tolerance $nItr 1 

   algorithm KrylovNewton 

   analysis Static 

   set ok [analyze 1] 

  } 

  if {$ok != 0} { 

   puts "Trying KylovNewton with NormUnbalance Test" 

   set tolerance 1.0e-4 

   set nItr $maxNumItrStatic 

   constraints Plain 

   numberer Plain 

   system SparseGeneral -piv 

   test NormUnbalance $tolerance $nItr 1 

   algorithm KrylovNewton 

   analysis Static 
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   set ok [analyze 1] 

  } 

  if {$ok != 0} { 

   puts "Trying Newton algorithm with NormDispIncr test" 

   set tolerance 1.0e-4 

   set nItr $maxNumItrStatic 

   test NormDispIncr $tolerance $nItr 1 

   algorithm Newton 

   set ok [analyze 1] 

  } 

  if {$ok != 0} { 

   puts "Trying Newton algorithm with NormUnbalance Test" 

   set tolerance 1.0e-4 

   set nItr $maxNumItrStatic 

   test NormUnbalance $tolerance $nItr 1 

   algorithm Newton 

   set ok [analyze 1] 

  } 

  if {$ok == 0} { 

   puts "Convergence Met" 

   set tolerance 1.0e-4 

   set nItr $maxNumItrStatic 

   #test NormUnbalance $tolerance $nItr 1 

   test EnergyIncr $tolerance $nItr 1 

   algorithm KrylovNewton 

   set currentdisp [nodeDisp $IDctrlNode $IDctrlDOF] 

   puts "displacement of column is $currentdisp" 



www.manaraa.com

343 

 

 

 

  } 

  set a [eleResponse 2 section 1 fiber -$rcon 0.0 1 strain] 

  set b [eleResponse 2 section 1 fiber $rsteel 0.0 3 strain] 

  set cconf [expr $a*$dconf/($a-$b)];     # This is the neutral axis depth of concrete from the confined region 

  set curv [expr abs($a)/$cconf];     # Curvature of the concrete section at the bottom node 

  puts "curvature of section is $curv" 

 } 

} else { 

# ------------------------------------------------------------------ 

# ---------------------------Cyclic Analysis------------------------ 

# ------------------------------------------------------------------ 

puts "running the cyclic analysis" 

set Dmax1 0.0 

set Dmaxa 0.0 

 foreach {Dmax} {0.01 -0.01 0.1 -0.1 0.2 -0.2 0.4 -0.4 0.8 -0.8 1.0 -1.0 1.4 -1.4 1.8 -1.8 2.0 -2.0 2.5 -2.5 3.0 -3.0 

4.0 -4.0 5.0 -5.0 6.0 -6.0 7.0 -7.0 0.1} { 

  if {[expr abs($Dmax)] < 0.2 && [expr abs($Dmaxa)] < 0.2} {  

   set stepSize 0.01 

  } elseif {[expr abs($Dmax)] >= 0.2 && [expr abs($Dmax)] <=1.0 && [expr abs($Dmaxa)] <=1.0} { 

   set stepSize 0.02 

  } else { 

   set stepSize 0.05 

  } 

  set numSteps [expr int(abs($Dmax-$Dmax1)/$stepSize)] 

  for {set i 1} {$i <= $numSteps} {incr i 1} { 

   set ok 0 

   if {$Dmax < 0} { 
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    set stepSize1 [expr -1.*$stepSize] 

    } else { 

    set stepSize1 $stepSize 

   } 

   integrator DisplacementControl $IDctrlNode $IDctrlDOF $stepSize1 

   analysis Static 

   # --------------------first analyze procedure-------------------------- 

   set ok [analyze 1] 

   # --------------------if convergence failure-------------------------- 

   # if the analysis failed, trying some other stuff to find convergence 

   if {$ok != 0} { 

    puts "Increasing the number of iterations and changing tolerance" 

    set tolerance 1.0e-4 

    set nItr $maxNumItrStatic 

    test EnergyIncr $tolerance $nItr 1 

    algorithm KrylovNewton 

    set ok [analyze 1] 

   } 

   if {$ok != 0} { 

    puts "Trying Krylov Newton with Different Tolerance and # of Iterations and 

NormDispIncr test" 

    set tolerance 1.0e-4 

    set nItr $maxNumItrStatic 

    test normDispIncr $tolerance $nItr 1 

    algorithm KrylovNewton 

    set ok [analyze 1] 

   } 
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   if {$ok != 0} { 

    puts "Trying KylovNewton with NormUnbalance Test" 

    set tolerance 1.0e-4 

    set nItr $maxNumItrStatic 

    test NormUnbalance $tolerance $nItr 1 

    algorithm KrylovNewton     

    set ok [analyze 1] 

   } 

   if {$ok != 0} { 

    puts "Trying Newton algorithm with NormDispIncr test" 

    set tolerance 1.0e-4 

    set nItr $maxNumItrStatic 

    test NormDispIncr $tolerance $nItr 1 

    algorithm Newton 

    set ok [analyze 1] 

   } 

   if {$ok != 0} { 

    puts "Trying Newton algorithm with NormUnbalance Test" 

    set tolerance 1.0e-4 

    set nItr $maxNumItrStatic 

    test NormUnbalance $tolerance $nItr 1 

    algorithm Newton 

    set ok [analyze 1] 

   } 

   if {$ok == 0} { 

    puts "Convergence met" 

    set tolerance 1.0e-5 
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    set nItr $maxNumItrStatic 

    #test NormUnbalance $tolerance $nItr 1 

    test NormDispIncr $tolerance $nItr 1 

    #test EnergyIncr $tolerance $nItr 1 

    algorithm KrylovNewton 

    set currentdisp [nodeDisp $IDctrlNode $IDctrlDOF] 

    puts "displacement of column is $currentdisp, displacement cycle of $Dmax" 

   }; # end if 

  }; # end i procedure 

  set Dmaxa $Dmax1 

  set Dmax1 $Dmax 

 }; # end Dmax cycle 

}; # end if statement for analysis type 

puts "Analysis is complete" 

B.3.3: Dynamic Analysis 

# Start the development of the model 

# units: kip, inch, sec 

# 

# clear any data from any previous analyses 

wipe; 

 

# Establish the type of analysis to be used for this column section and some basic information about the materials 

#set Analoption Pushover;     # want this to be "Cyclic" for a cyclic analysis otherwise something else to run 

pushover analysis 

#set Trial 1 

#set concMat c03;     # Options are c07, c02, c03 
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#set steelMat s02;     # Options are rs, s02  

#set phiu 0.00144995;     # Ultimate curvature of the concrete section (from moment-curvature analysis) 

#set ARatio 0.25; # Column Aspect Ratio 

#set ALR 0.05;     # Column Axial Load Ratio 

#set colD 48;     # Column Diameter 

 

#Going to call up the above information using Matlab to do the batching process 

source input.tcl 

source input2.tcl 

 

# Create a file folder location for all of the data in the OpenSees folder 

set File 

Data_multDispEle_ATC_D{$colD}_ConcMat{$concMat}_SteelMat{$steelMat}_ALR{$ALR}_Aspect{$ARatio}

_{$Analoption}_Trial{$Trial}_SP; 

file mkdir $File; 

 

# define the model builder and how many dimensions and degrees of freedom 

model BasicBuilder -ndm 2 -ndf 3 

 

# define some important constants for calculations 

#set pi [expr 4*atan(1)]; 

#set g 386.4;     # establshing the gravity constant in in/sec^2 

 

# Define some geometry of the section 

#set colD 48; 

#set Ag [expr $pi*pow($colD,2)/4]; 

#set cover 2.;     # Cover to Longitudinal Bar 
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#set dbl 1.410;     # Longitudinal Bar Diameter 

#set Abl 1.56;     # Longitudinal Bar Area 

#set dbh 0.625;     # Hoop Bar Diameter 

#set Abh 0.31;     # Hoop Bar Area 

#set Dpr [expr $colD-2*$cover+$dbh]; 

#set Ac [expr $pi*pow($Dpr,2)/4]; 

#set Dbar [expr $colD-2*$cover-$dbl]; 

 

# Establish the important radii for the section definition 

#set rout [expr $colD/2]; 

#set rpr [expr $Dpr/2]; 

#set rbar [expr $Dbar/2]; 

set dconf [expr $rcon+$rsteel];     # depth of steel bar from the confined concrete region definition 

 

# Define the geometry of the column above the foundation 

set Lcol [expr $colD/$ARatio]; 

#set Lele [expr 1.2973*pow($ARatio,-1)]; 

set colNumIncr [expr int(ceil($Lcol/$Lele))]; 

puts "colNumIncr = $colNumIncr" 

set colIncr [expr $Lcol/$colNumIncr]; 

 

# Define the number of longitudinal bars to be used in the section model 

#set rhold 0.02; 

#set Asd [expr $rhold*$Ag]; 

#set ns [expr int(ceil($Asd/$Abl))]; 

set rhola [expr $ns*$Abar/$Ag]; 
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# nodal coordinates for the model - node(node#, X, Y) 

 

node 1 0.0 0.0 

node 2 0.0 0.0 

 

for {set i 1} {$i <= $colNumIncr} {incr i 1} { 

 node [expr $i+2] 0 [expr $i*$colIncr] 

 puts "node [expr $i+2] = [expr $i*$colIncr]" 

} 

puts "nodes established" 

 

# Single point constraints -- Boundary Conditions fix(node #, DX, DY, RZ) 

fix 1 1 1 1 

 

# Going to establish the nodal conditions at the top of the strain penetration element 

# Creating an equal dof such that the element can slip along the length of the element in 

# local coordinate system.  Thus only constrain the dof 2 using: 

# equalDOF (Master Node, Slave Node, DOF to match) 

equalDOF 1 2 1 

 

# Define the material properties that are going to be used in the fiber section 

# 

# Unconfined Concrete Properties First 

#set fc 4; 

#set Ec [expr 57*pow($fc*1000,0.5)]; 

#set ec [expr pow($fc*1000,0.25)/4000]; 

#set ft1 0.0005; 
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#set et1 [expr 2*$ft1/$Ec]; 

#set xp1 1.23;   

#set xn1 2.3;    

#set r1 [expr ($fc*1000/750)-1.9]; 

#set fc1 [expr -1*$fc]; 

#set ec1 [expr -1*$ec]; 

 

# Reinforcing Steel Properties 

#set fy 60.; 

#set fye [expr 1.1*$fy]; 

#set fsu [expr 1.5*$fye]; 

#set Es 29000.; 

#set Esh 850.; 

#set esh [expr 3.24*$fye/$Es]; 

#set esu 0.12; 

#set Eratio 0.02; 

 

# Define the column axial load 

#set PCol [expr $ALR*$fc1*$Ag]; 

 

# Confined Concrete Properties 

#set rhos [expr 0.16*($fc/$fy)*(0.5+1.25*$ALR)+0.13*($rhola-0.01)];     # ATC-32 Reccommendation and values 

in Priestley (1996) 

#set rhos [expr 0.45*($fc/$fy)*(($Ag/$Ac)-1)];     #This is the Caltrans Minimum Equation 

#set s [expr 4*$Abh/($Dpr*$rhos)]; 

#set sclear [expr $s-$dbh]; 

#set rhocc [expr $ns*$Abl/$Ac]; 
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#set Ke [expr (1-0.5*$sclear/$Dpr)/(1-$rhocc)]; 

#puts "Ke = $Ke" 

#set flp [expr $Ke*$fy*$rhos/2]; 

#set fcc [expr $fc*(2.254*pow((1+7.94*$flp/$fc),0.5)-2*$flp/$fc-1.254)]; 

#set ecc [expr 0.002*(1+5*($fcc/$fc-1))]; 

#set Ecc [expr 57*pow($fc*1000,0.5)]; 

#set ft2 0.0005; 

#set et2 [expr 2*$ft2/$Ecc]; 

#set xp2 1.23; 

#set xn2 20;     # this is supposed to be between 20-30 based on information provided by others using Concrete07 

#set n2 [expr $Ecc*$ecc/$fcc]; 

#set r2 [expr $n2/($n2-1)]; 

#set ecu [expr -1*(0.004+1.4*$rhos*$fy*$esu/$fcc)]; 

set rmander [expr $Ecc/($Ecc-($fccmat/$eccmat))]; 

set xult [expr $ecu/$eccmat]; 

puts "xult = $xult" 

set fccu [expr ($fccmat*$xult*$rmander)/($rmander-1+pow($xult,$rmander))]; 

#set fc2 [expr -1*$fcc]; 

#set ec2 [expr -1*$ecc]; 

set fcu2 [expr $fccu]; 

#set fcu2 -4.; 

puts "ultimate compressive strength = $fcu2" 

puts "confined concrete properties ok" 

 

# Writing a text file of the information used for the analysis 

set out [open "$File/Input.txt" w] 

puts $out "Units in the Program" 
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puts $out "Forces are in kips" 

puts $out "Displacements and Dimensions are in inches" 

puts $out "Time is in Seconds" 

puts $out "" 

puts $out "" 

puts $out "Analysis Type = $Analoption" 

puts $out "" 

puts $out "" 

puts $out "Section Geometry" 

puts $out "" 

puts $out "Column Diameter = $colD" 

puts $out "Cover to Main Bar = $cover" 

puts $out "Longitudinal Bar Diameter = $dbl" 

puts $out "Longitudianl Bar Area = $Abar" 

puts $out "Number Longitudinal Bars = $ns" 

puts $out "Longitudinal Reinforcement Ratio = $rhola" 

puts $out "Hoop Bar Diameter = $dbh" 

puts $out "Hoop Bar Area = $Abh" 

puts $out "Hoop Spacing = $s" 

puts $out "Horizontal Reinforcement Ratio = $rhos" 

puts $out "" 

puts $out "" 

puts $out "Column Geometry above the Spread Footing" 

puts $out "" 

puts $out "Column Height = $Lcol" 

puts $out "Aspect Ratio = $ARatio" 

puts $out "Element Length = $colIncr" 
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puts $out "Number of Elements = $colNumIncr" 

puts $out "" 

puts $out "" 

puts $out "Applied Loads" 

puts $out "" 

puts $out "Column Axial Load At Top = $P" 

puts $out "" 

puts $out "" 

puts $out "Unconfined Concrete Material Properties" 

puts $out "" 

puts $out "Compressive Strength = $fcmat" 

puts $out "Strain at Compressive Strength = $ecmat" 

puts $out "Modulus of Elasticity = $Ec" 

puts $out "Tensile Strength = $ft1" 

puts $out "Tensile Strain = $et1" 

puts $out "Concrete Model is $concMat" 

puts $out "" 

puts $out "" 

puts $out "Confined Concrete Material Properties" 

puts $out "" 

puts $out "Confinement Effectiveness, Ke = $Ke" 

puts $out "Compressive Strength = $fccmat" 

puts $out "Strain at Compressive Strength = $eccmat" 

puts $out "Modulus of Elasticity = $Ecc" 

puts $out "Ultimate Compressive Strain = $ecu" 

puts $out "Ultimate Compressive Stress = $fcu2" 

puts $out "Tensile Strength = $ft2" 
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puts $out "Tensile Strain = $et2" 

puts $out "Concrete Model is $concMat" 

puts $out "" 

puts $out "" 

puts $out "Reinforcing Steel Material Properties" 

puts $out "" 

puts $out "Hoop Yield Stress = $fy" 

puts $out "Longitudinal Yield Stress = $fye" 

puts $out "Ultimate Stress = $fsu" 

puts $out "Modulus of Elasticity = $Es" 

puts $out "Hardening Steel Strain = $esh" 

puts $out "Hardening Modulus of Elasticity = $Esh" 

puts $out "Ultimate Steel Strain = $esu" 

puts $out "Steel Model is $steelMat" 

close $out 

 

 

 

# Write the actual material property definitions in OpenSees 

# Concrete Properties using Concrete07(tag, fc, ec, Ec, ft, et, xp, xn, r) 

# Concrete Properties using Concrete02(tag,fc, ec, fc(crushing), ec(crushing), lambda, ft, Ets) 

# Concrete Properties using Concrete03(tag, fc, ec, fc (crushing), ec (crushing), lambda (0.1), ft, ets0 (tension 

transition to strain softening), ft0 (tesnsion stress at softening transition), beta (exponent tension soft), etu (ultimate 

tensile strain)) 

# Steel Properties using ReinforcingSteel(tag, fy, fu, Es, Esh, esh, esu) 

# Steel Properties using Steel02(tag, fy, Es, b(0.015), R0 (between 10 and 20), CR1 (0.925), CR2(0.15), a1(0), 

a2(5), a3(0), a4(5) 
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# ---------------------------------------------------------------------------------------------- 

# Unconfined Concrete Models 

if {$concMat == "c07"} { 

 uniaxialMaterial Concrete07 2 $fcmat $ecmat $Ec $ft1 $et1 $xp1 $xn1 $r1 

} elseif {$concMat == "c02"} { 

 uniaxialMaterial Concrete02 2 $fcmat $ecmat [expr 0.1*$fcmat] -0.008 0.1 $ft1 [expr $Ec/10] 

} else { 

 uniaxialMaterial Concrete03 2 $fcmat $ecmat -0.01 -0.0091 0.1 $ft1 0.003 0.0004 2.5 0.004 

} 

 

# Confined Concrete Models 

if {$concMat == "c07"} { 

 uniaxialMaterial Concrete07 1 $fccmat $eccmat $Ecc $ft2 $et2 $xp2 $xn2 $r2 

} elseif {$concMat == "c02"} { 

 uniaxialMaterial Concrete02 1 $fccmat $eccmat [expr 0.1*$fccmat] $ecu 0.1 $ft2 [expr $Ec/10] 

} else { 

 uniaxialMaterial Concrete03 1 $fccmat $eccmat $fcu2 $ecu 0.1 $ft2 0.003 0.0004 2.5 0.004 

} 

 

# Reinforcing Steel Models 

if {$steelMat == "rs"} { 

 uniaxialMaterial ReinforcingSteel 3 $fye $fsu $Es $Esh $esh $esu 

} else { 

 uniaxialMaterial Steel02 3 $fye $Es $Eratio 18 0.925 0.15 0 5 0 5 

} 

 

# Strain Penetration Model Needs to be Defined 
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# Defining the Slip Curve using Bond_SP01 $matTag $Fy $Sy $Fu $Su $b $R 

# Fy = yield stress of r/f steel 

# Sy = rebar slip at member interface under yield stress 

# Fu = ultimate strength of reinforcing steel 

# Su = rebar slip at the loaded end at the bar fracture strength 

# b = initial hardening ratio in the monotonic slip vs. bar stress response (0.3 ~ 0.5) (Paper says 0.5 in columns) 

# R = Pinching factor for the cyclic slip vs. bar response (0.5 ~ 1.0) (Paper says 1.0 columns and 0.7 tee-joint) 

 

set alpha 0.4; 

set alphain [expr 1/$alpha]; 

set Fy [expr $fye*1000]; 

set bracket [expr ($dbl/4000)*($Fy/pow(-1*$fccmat*1000,0.5))*(2*$alpha+1)]; 

set Sy [expr 0.1*pow($bracket,$alphain)+0.013] 

set Su [expr 40*$Sy] 

set b 0.5; 

set R 1.0; 

puts "Yield Slip = $Sy" 

puts "Ultimate Slip = $Su" 

 

uniaxialMaterial Bond_SP01 4 $fye $Sy $fsu $Su $b $R 

 

puts "Materials Defined" 

 

# Create the fiber section to be used in the analysis for this model of a circular column 

# --------------------------------------------------- 

# Define the number of fibers to be used in the cross-section 

#set length 0.5 
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#set nfcradial [expr int(ceil(0.5*$Dpr/$length))] 

#set nfccirc [expr int(ceil($pi*$Dpr/$length))] 

#set nfuradial [expr int(ceil($cover/$length))] 

#set nfucirc [expr int(ceil($pi*$colD/$length))] 

 

# Define the cross-section using fibers 

 

section Fiber 1 { 

 patch circ 1 $nfccirc $nfcradial 0 0 0 $rcon 0 360 

 patch circ 2 $nfucirc $nfuradial 0 0 $rcon $rcov 0 360 

 layer circ 3 $ns $Abar 0 0 $rsteel 0 360 

 } 

 

section Fiber 2 { 

 patch circ 1 $nfccirc $nfcradial 0 0 0 $rcon 0 360 

 patch circ 2 $nfucirc $nfuradial 0 0 $rcon $rcov 0 360 

 layer circ 4 $ns $Abar 0 0 $rsteel 0 360 

 } 

  

# define geometric transformation to transform basic system to global system 

geomTransf Linear 101 

#geomTransf PDelta 101 

 

# establish the element(s) for use in the model 

set numIntgrPts 5; 

 

element zeroLengthSection 1 1 2 2 -orient 0 1 0 1 0 0 
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# in the orientation term $x1 $x2 $x3 define the local x-axis in global coordinates 

# the yp terms can be found as the x vector crossed with yp equals your z-vector direction 

 

for {set i 1} {$i <= $colNumIncr} {incr i 1} { 

 element dispBeamColumn [expr $i+1] [expr $i+1] [expr $i+2] $numIntgrPts 1 101 

 puts "element = [expr $i+1] for node [expr $i+1] and [expr $i+2]" 

} 

 

puts "elements defined" 

 

# Define RECORDERS ---------------------------------------------------------------------------  

recorder Node -file $File/DFree1.out -time -node 2 -dof 1 2 3 disp; 

recorder Node -file $File/Dtop.out -time -node [expr $colNumIncr+2] -dof 1 2 3 disp; 

recorder Node -file $File/DBase1.out -time -node 1 -dof 1 2 3 disp; 

recorder Node -file $File/RBase1.out -time -node 1 -dof 1 2 3 reaction; 

recorder Node -file $File/DBase2.out -time -node 2 -dof 1 2 3 disp; 

recorder Node -file $File/Rbase2.out -time -node 2 -dof 1 2 3 reaction; 

#recorder Drift -file $File/Drift1.out -time -iNode 1 -jNode 2 -dof 1 -perpDirn 2; 

#recorder Drift -file $File/Drift2.out -time -iNode 2 -jNode 3 -dof 1 -perpDirn 2; 

#recorder Drift -file $File/DriftTot.out -time -iNode 1 -jNode [expr $colNumIncr+1] -dof 1 -perpDirn 2; 

recorder Element -file $File/FCol1.out -time -ele 1 globalForce; 

recorder Element -file $File/Fcol2.out -time -ele 2 globalForce 

recorder Element -file $File/FColTop.out -time -ele [expr $colNumIncr+1] globalForce; 

recorder Element -file $File/TopUCse.out -time -ele [expr $colNumIncr+1] section fiber -$rcov 0.0 2 stressStrain 

recorder Element -file $File/BotUCse1.out -time -ele 1 section fiber -$rcov 0.0 2 stressStrain 

recorder Element -file $File/BotUCse2.out -time -ele 2 section fiber -$rcov 0.0 2 stressStrain 

recorder Element -file $File/TopCCse.out -time -ele [expr $colNumIncr+1] section fiber -$rcon 0.0 1 stressStrain 
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recorder Element -file $File/BotCCse1.out -time -ele 1 section fiber -$rcon 0.0 1 stressStrain 

recorder Element -file $File/BotCCse2.out -time -ele 2 section fiber -$rcon 0.0 1 stressStrain 

recorder Element -file $File/TopRFse.out -time -ele [expr $colNumIncr+1] section fiber $rsteel 0.0 3 stressStrain 

recorder Element -file $File/BotRFse1.out -time -ele 1 section fiber $rsteel 0.0 4 stressStrain 

recorder Element -file $File/BotRFse2.out -time -ele 2 section fiber $rsteel 0.0 3 stressStrain 

#recorder Element -file $File/DefoCol1.out -time -ele 1 basicDeformation; 

#recorder Element -file $File/DefoCol2.out -time -ele 2 basicDeformation; 

#recorder Element -file $File/FColSec1_1.out -time -ele 1 section 1 force; 

#recorder Element -file $File/FColSec1_2.out -time -ele 2 section 1 force; 

#recorder Element -file $File/DefoColSec1_1.out -time -ele 1 section 1 deformation; 

#recorder Element -file $File/DefoColSec1_2.out -time -ele 2 section 1 deformation; 

#recorder Element -file $File/FColSec{$numIntgrPts}_1.out -time -ele 1 section $numIntgrPts force; 

#recorder Element -file $File/FColSec{$numIntgrPts}_2.out -time -ele 2 section $numIntgrPts force; 

#recorder Element -file $File/DefoColSec{$numIntgrPts}_1.out -time -ele 1 section $numIntgrPts deformation; 

#recorder Element -file $File/DefoColSec{$numIntgrPts}_2.out -time -ele 1 section $numIntgrPts deformation; 

recorder Element -file $File/FLength.out -time -eleRange 2 [expr $colNumIncr+1] globalForce 

recorder Element -file $File/RFseLength.out -time -eleRange 2 [expr $colNumIncr+1] section fiber $rsteel 0 3 

stressStrain 

recorder Element -file $File/CCseLength.out -time -eleRange 2 [expr $colNumIncr+1] section fiber -$rcon 0 1 

stressStrain 

recorder Element -file $File/UCseLength.out -time -eleRange 2 [expr $colNumIncr+1] section fiber -$rcov 0 2 

stressStrain 

 

puts "recorders started" 

 

# define the Gravity Load on the column --------------------------------------------------------- 

pattern Plain 1 Linear { 
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 load [expr $colNumIncr+2] 0 [expr -1*$P] 0 

} 

 

set Tol 1.0e-8; 

constraints Plain; 

numberer Plain; 

system BandGeneral; 

test NormDispIncr $Tol 10; 

algorithm Newton; 

set NstepGravity 10; 

set DGravity [expr 1./$NstepGravity]; 

integrator LoadControl $DGravity; 

analysis Static 

analyze $NstepGravity 

 

# Maintain the applied gravity load and reset the time of the program to 0 

loadConst -time 0.0 

puts "Gravity load applied, moving to cyclic analysis" 

 

# define the cyclic lateral load analysis ------------------------------------------------------- 

# 

# Establish the model parameters specific to this analysis 

set IDctrlNode [expr $colNumIncr+2]; 

puts "IDctrlNode = $IDctrlNode" 

set IDctrlDOF 1;     # This is for the Global X-Direction, 2 is the Global Y-Direction, 3 is the Global Rotation about 

z 

set du [expr -25.55*$ARatio+32.55]; 
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set nsteps 600; 

set Dincr [expr $du/$nsteps]; 

 

# Define the static analysis parameters for this process 

set tolerance 1.0e-5 

set nItr 100 

set maxNumItrStatic 5000 

#constraints Plain; 

#numberer Plain; 

#system SparseGeneral -piv 

#test EnergyIncr $tolerance $nItr 1 

#test NormUnbalance $tolerance $nItr 1 

#algorithm KrylovNewton 

#analysis Static 

 

pattern Plain 200 Linear { 

 load $IDctrlNode 1.0 0.0 0.0 

} 

 

if {$Analoption != "Cyclic"} { 

 puts "running the pushover analysis" 

 set a [eleResponse 2 section 1 fiber -$rcon 0.0 1 strain] 

 set b [eleResponse 2 section 1 fiber $rcov 0.0 3 strain] 

 set cconf [expr $a*$dconf/($a-$b)];     # This is the neutral axis depth of concrete from the confined region 

 set curv [expr abs($a)/$cconf];     # This is the curvature of the concrete section at the bottom node 

 while {$curv <= $phiu} {  

  set ok 0 
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  constraints Plain 

  numberer Plain 

  system SparseGeneral -piv 

  test EnergyIncr $tolerance $nItr 1 

  algorithm KrylovNewton 

  integrator DisplacementControl $IDctrlNode $IDctrlDOF $Dincr 

  analysis Static 

  set ok [analyze 1] 

  if {$ok != 0} { 

   puts "Trying Krylov Newton with Different Tolerance and # of Iterations and NormDispIncr test" 

   set tolerance 1.0e-4 

   set nItr $maxNumItrStatic 

   constraints Plain 

   numberer Plain 

   system SparseGeneral -piv 

   test normDispIncr $tolerance $nItr 1 

   algorithm KrylovNewton 

   analysis Static 

   set ok [analyze 1] 

  } 

  if {$ok != 0} { 

   puts "Trying KylovNewton with NormUnbalance Test" 

   set tolerance 1.0e-4 

   set nItr $maxNumItrStatic 

   constraints Plain 

   numberer Plain 

   system SparseGeneral -piv 



www.manaraa.com

363 

 

 

 

   test NormUnbalance $tolerance $nItr 1 

   algorithm KrylovNewton 

   analysis Static 

   set ok [analyze 1] 

  } 

  if {$ok != 0} { 

   puts "Trying Newton algorithm with NormDispIncr test" 

   set tolerance 1.0e-4 

   set nItr $maxNumItrStatic 

   test NormDispIncr $tolerance $nItr 1 

   algorithm Newton 

   set ok [analyze 1] 

  } 

  if {$ok != 0} { 

   puts "Trying Newton algorithm with NormUnbalance Test" 

   set tolerance 1.0e-4 

   set nItr $maxNumItrStatic 

   test NormUnbalance $tolerance $nItr 1 

   algorithm Newton 

   set ok [analyze 1] 

  } 

  if {$ok == 0} { 

   puts "Convergence Met" 

   set tolerance 1.0e-4 

   set nItr $maxNumItrStatic 

   #test NormUnbalance $tolerance $nItr 1 

   test EnergyIncr $tolerance $nItr 1 
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   algorithm KrylovNewton 

   set currentdisp [nodeDisp $IDctrlNode $IDctrlDOF] 

   puts "displacement of column is $currentdisp" 

  } 

  set a [eleResponse 2 section 1 fiber -$rcon 0.0 1 strain] 

  set b [eleResponse 2 section 1 fiber $rsteel 0.0 3 strain] 

  set cconf [expr $a*$dconf/($a-$b)];     # This is the neutral axis depth of concrete from the confined region 

  set curv [expr abs($a)/$cconf];     # Curvature of the concrete section at the bottom node 

  puts "curvature of section is $curv" 

 } 

} else { 

# ------------------------------------------------------------------ 

# ---------------------------Cyclic Analysis------------------------ 

# ------------------------------------------------------------------ 

puts "running the cyclic analysis" 

set Dmax1 0.0 

set Dmaxa 0.0 

 foreach {Dmax} {0.01 -0.01 0.1 -0.1 0.2 -0.2 0.4 -0.4 0.8 -0.8 1.0 -1.0 1.4 -1.4 1.8 -1.8 2.0 -2.0 2.5 -2.5 3.0 -3.0 

4.0 -4.0 5.0 -5.0 6.0 -6.0 7.0 -7.0 0.1} { 

  if {[expr abs($Dmax)] < 0.2 && [expr abs($Dmaxa)] < 0.2} {  

   set stepSize 0.01 

  } elseif {[expr abs($Dmax)] >= 0.2 && [expr abs($Dmax)] <=1.0 && [expr abs($Dmaxa)] <=1.0} { 

   set stepSize 0.02 

  } else { 

   set stepSize 0.05 

  } 

  set numSteps [expr int(abs($Dmax-$Dmax1)/$stepSize)] 
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  for {set i 1} {$i <= $numSteps} {incr i 1} { 

   set ok 0 

   if {$Dmax < 0} { 

    set stepSize1 [expr -1.*$stepSize] 

    } else { 

    set stepSize1 $stepSize 

   } 

   integrator DisplacementControl $IDctrlNode $IDctrlDOF $stepSize1 

   analysis Static 

   # --------------------first analyze procedure-------------------------- 

   set ok [analyze 1] 

   # --------------------if convergence failure-------------------------- 

   # if the analysis failed, trying some other stuff to find convergence 

   if {$ok != 0} { 

    puts "Increasing the number of iterations and changing tolerance" 

    set tolerance 1.0e-4 

    set nItr $maxNumItrStatic 

    test EnergyIncr $tolerance $nItr 1 

    algorithm KrylovNewton 

    set ok [analyze 1] 

   } 

   if {$ok != 0} { 

    puts "Trying Krylov Newton with Different Tolerance and # of Iterations and 

NormDispIncr test" 

    set tolerance 1.0e-4 

    set nItr $maxNumItrStatic 

    test normDispIncr $tolerance $nItr 1 
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    algorithm KrylovNewton 

    set ok [analyze 1] 

   } 

   if {$ok != 0} { 

    puts "Trying KylovNewton with NormUnbalance Test" 

    set tolerance 1.0e-4 

    set nItr $maxNumItrStatic 

    test NormUnbalance $tolerance $nItr 1 

    algorithm KrylovNewton     

    set ok [analyze 1] 

   } 

   if {$ok != 0} { 

    puts "Trying Newton algorithm with NormDispIncr test" 

    set tolerance 1.0e-4 

    set nItr $maxNumItrStatic 

    test NormDispIncr $tolerance $nItr 1 

    algorithm Newton 

    set ok [analyze 1] 

   } 

   if {$ok != 0} { 

    puts "Trying Newton algorithm with NormUnbalance Test" 

    set tolerance 1.0e-4 

    set nItr $maxNumItrStatic 

    test NormUnbalance $tolerance $nItr 1 

    algorithm Newton 

    set ok [analyze 1] 

   } 



www.manaraa.com

367 

 

 

 

   if {$ok == 0} { 

    puts "Convergence met" 

    set tolerance 1.0e-5 

    set nItr $maxNumItrStatic 

    #test NormUnbalance $tolerance $nItr 1 

    test NormDispIncr $tolerance $nItr 1 

    #test EnergyIncr $tolerance $nItr 1 

    algorithm KrylovNewton 

    set currentdisp [nodeDisp $IDctrlNode $IDctrlDOF] 

    puts "displacement of column is $currentdisp, displacement cycle of $Dmax" 

   }; # end if 

  }; # end i procedure 

  set Dmaxa $Dmax1 

  set Dmax1 $Dmax 

 }; # end Dmax cycle 

}; # end if statement for analysis type 

puts "Analysis is complete" 
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